IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i12p4395-4408.html
   My bibliography  Save this article

Energy Efficiency and Maintenance Costs of Pumping Systems for Groundwater Extraction

Author

Listed:

Abstract

Sustainability and profitability of irrigation depends to a great extent on the energy efficiency of the pumping system, as water extraction from wells accounts for most of the energy consumption in irrigation activities all over the world. In this paper a methodology is presented intended to calculate and generalize total maintenance costs in well pumping systems. Likewise, the study has been conducted over 22 well pumping stations with the aim of analyzing the energy efficiency. The results show the essential role played by preventive maintenance works in the improvement of energy and economic efficiency. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • M. Mora & J. Vera & C. Rocamora & R. Abadia, 2013. "Energy Efficiency and Maintenance Costs of Pumping Systems for Groundwater Extraction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4395-4408, September.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:12:p:4395-4408
    DOI: 10.1007/s11269-013-0423-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0423-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0423-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    2. J. Rodríguez Díaz & P. Montesinos & E. Poyato, 2012. "Detecting Critical Points in On-Demand Irrigation Pressurized Networks – A New Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1693-1713, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alotaibi, Naif M. & Scarf, Philip & Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & de Oliveira e Silva, André Luiz & Rodrigues, Augusto J.S. & Alyami, Salem A., 2023. "Modified-opportunistic inspection and the case of remote, groundwater well-heads," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. M. Mora & H. Puerto & C. Rocamora & R. Abadia, 2021. "New Indicators to Discriminate the Cause of Low Energy Efficiency in Deep-Well Pumps," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1373-1388, March.
    3. Divya Handa & Robert S. Frazier & Saleh Taghvaeian & Jason G. Warren, 2019. "The Efficiencies, Environmental Impacts and Economics of Energy Consumption for Groundwater-Based Irrigation in Oklahoma," Agriculture, MDPI, vol. 9(2), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    2. Fernández García, I. & Rodríguez Díaz, J.A. & Camacho Poyato, E. & Montesinos, P. & Berbel, J., 2014. "Effects of modernization and medium term perspectives on water and energy use in irrigation districts," Agricultural Systems, Elsevier, vol. 131(C), pages 56-63.
    3. Ortega-Reig, M. & Sanchis-Ibor, C. & Palau-Salvador, G. & García-Mollá, M. & Avellá-Reus, L., 2017. "Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain," Agricultural Water Management, Elsevier, vol. 187(C), pages 164-172.
    4. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Tapsuwan, Sorada & Peña-Arancibia, Jorge L. & Lazarow, Neil & Albisetti, Melisa & Zheng, Hongxing & Rojas, Rodrigo & Torres-Alferez, Vianney & Chiew, Francis H.S. & Hopkins, Richard & Penton, David J., 2022. "A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru," Agricultural Water Management, Elsevier, vol. 265(C).
    6. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    7. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    8. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    9. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    10. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    11. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    12. Chen, Dan & Webber, Michael & Chen, Jing & Luo, Zhaohui, 2011. "Emergy evaluation perspectives of an irrigation improvement project proposal in China," Ecological Economics, Elsevier, vol. 70(11), pages 2154-2162, September.
    13. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    14. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    15. Ramesh Srivastava & Sheelabhadra Mohanty & Ramlal Singandhuppe & Rajiv Mohanty & Madhu Behera & Lala Ray & Deepika Sahoo, 2010. "Feasibility Evaluation of Pressurized Irrigation in Canal Commands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3017-3032, September.
    16. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    17. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    18. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    19. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    20. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:12:p:4395-4408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.