IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i12p4149-4162.html
   My bibliography  Save this article

Design of Water Distribution Networks using a Pseudo-Genetic Algorithm and Sensitivity of Genetic Operators

Author

Listed:
  • D. Mora-Melia
  • P. Iglesias-Rey
  • F. Martinez-Solano
  • V. Fuertes-Miquel

Abstract

Genetic algorithms (GA) are optimization techniques that are widely used in the design of water distribution networks. One of the main disadvantages of GA is positional bias, which degrades the quality of the solution. In this study, a modified pseudo-genetic algorithm (PGA) is presented. In a PGA, the coding of chromosomes is performed using integer coding; in a traditional GA, binary coding is utilized. Each decision variable is represented by only one gene. This variation entails a series of special characteristics in the definition of mutation and crossover operations. Some benchmark networks have been used to test the suitability of a PGA for designing water distribution networks. More than 50,000 simulations were conducted with different sets of parameters. A statistical analysis of the obtained solutions was also performed. Through this analysis, more suitable values of mutation and crossover probabilities were discovered for each case. The results demonstrate the validity of the method. Optimum solutions are not guaranteed in any heuristic method. Hence, the concept of a “good solution” is introduced. A good solution is a design solution that does not substantially exceed the optimal solution that is obtained from the simulations. This concept may be useful when the computational cost is critical. The main conclusion derived from this study is that a proper combination of population and crossover and mutation probabilities leads to a high probability that good solutions will be obtained. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • D. Mora-Melia & P. Iglesias-Rey & F. Martinez-Solano & V. Fuertes-Miquel, 2013. "Design of Water Distribution Networks using a Pseudo-Genetic Algorithm and Sensitivity of Genetic Operators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4149-4162, September.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:12:p:4149-4162
    DOI: 10.1007/s11269-013-0400-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0400-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0400-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sara Nazif & Mohammad Karamouz & Massoud Tabesh & Ali Moridi, 2010. "Pressure Management Model for Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 437-458, February.
    2. Mohamed Louati & Sihem Benabdallah & Fethi Lebdi & Darko Milutin, 2011. "Application of a Genetic Algorithm for the Optimization of a Complex Reservoir System in Tunisia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2387-2404, August.
    3. J. Reca & J. Martínez & C. Gil & R. Baños, 2008. "Application of Several Meta-Heuristic Techniques to the Optimization of Real Looped Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1367-1379, October.
    4. Milan Cisty, 2010. "Hybrid Genetic Algorithm and Linear Programming Method for Least-Cost Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiono, Naoshi & Suzuki, Hisatoshi, 2016. "Optimal pipe-sizing problem of tree-shaped gas distribution networks," European Journal of Operational Research, Elsevier, vol. 252(2), pages 550-560.
    2. Zhang, Yang & Andrews, John & Reed, Sean & Karlberg, Magnus, 2017. "Maintenance processes modelling and optimisation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 150-160.
    3. Jimmy H. Gutiérrez-Bahamondes & Daniel Mora-Melia & Bastián Valdivia-Muñoz & Fabián Silva-Aravena & Pedro L. Iglesias-Rey, 2023. "Infeasibility Maps: Application to the Optimization of the Design of Pumping Stations in Water Distribution Networks," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    4. Hossein Fallah & Ozgur Kisi & Sungwon Kim & Mohammad Rezaie-Balf, 2019. "A New Optimization Approach for the Least-Cost Design of Water Distribution Networks: Improved Crow Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3595-3613, August.
    5. D. Mora-Melia & P. Iglesias-Rey & F. Martinez-Solano & P. Ballesteros-Pérez, 2015. "Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4817-4831, October.
    6. Mohammad Rahimi & Ali Haghighi, 2015. "A Graph Portioning Approach for Hydraulic Analysis-Design of Looped Pipe Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5339-5352, November.
    7. Sheyda Bahoosh & Reza Bahoosh & Ali Haghighi, 2019. "Development of a Self-Adaptive Ant Colony Optimization for Designing Pipe Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4715-4729, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose-Luis Molina & Raziyeh Farmani & John Bromley, 2011. "Aquifers Management through Evolutionary Bayesian Networks: The Altiplano Case Study (SE Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3883-3909, November.
    2. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    3. J. Yazdi, 2016. "Decomposition based Multi Objective Evolutionary Algorithms for Design of Large-Scale Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2749-2766, June.
    4. Ali Haghighi & Amin Bakhshipour, 2012. "Optimization of Sewer Networks Using an Adaptive Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3441-3456, September.
    5. Mohammad Rahimi & Ali Haghighi, 2015. "A Graph Portioning Approach for Hydraulic Analysis-Design of Looped Pipe Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5339-5352, November.
    6. Nikolai Gorev & Inna Kodzhespirova & Yuriy Kovalenko & Rogelio Álvarez & Eugenio Prokhorov & Alfredo Ramos, 2011. "Evolutionary Testing of Hydraulic Simulator Functionality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1935-1947, June.
    7. Ali Haghighi & Hossein Samani & Zeinab Samani, 2011. "GA-ILP Method for Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(7), pages 1791-1808, May.
    8. Mahsa Amirabdollahian & Morteza Mokhtari, 2015. "Optimal Design of Pumped Water Distribution Networks with Storage Under Uncertain Hydraulic Constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2637-2653, June.
    9. Waqed H. Hassan & Musa H. Jassem & Safaa S. Mohammed, 2018. "A GA-HP Model for the Optimal Design of Sewer Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 865-879, February.
    10. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    11. Bohong Wang & Yongtu Liang & Wei Zhao & Yun Shen & Meng Yuan & Zhimin Li & Jian Guo, 2021. "A Continuous Pump Location Optimization Method for Water Pipe Network Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 447-464, January.
    12. Milan Cisty, 2010. "Hybrid Genetic Algorithm and Linear Programming Method for Least-Cost Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 1-24, January.
    13. João Marques & Maria Cunha & Dragan Savić & Orazio Giustolisi, 2017. "Water Network Design Using a Multiobjective Real Options Framework," Journal of Optimization, Hindawi, vol. 2017, pages 1-13, January.
    14. Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
    15. González-Bravo, Ramón & Fuentes-Cortés, Luis Fabián & Ponce-Ortega, José María, 2017. "Defining priorities in the design of power and water distribution networks," Energy, Elsevier, vol. 137(C), pages 1026-1040.
    16. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    17. Zeinab Takbiri & Abbas Afshar, 2012. "Multi-Objective Optimization of Fusegates System under Hydrologic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2323-2345, June.
    18. Qiang Xu & Qiuwen Chen & Jinfeng Ma & Koen Blanckaert & Zhonghua Wan, 2014. "Water Saving and Energy Reduction through Pressure Management in Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3715-3726, September.
    19. Raúl Baños & Juan Reca & Juan Martínez & Consolación Gil & Antonio Márquez, 2011. "Resilience Indexes for Water Distribution Network Design: A Performance Analysis Under Demand Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2351-2366, August.
    20. Roberto Magini & Manuela Moretti & Maria Antonietta Boniforti & Roberto Guercio, 2023. "A Machine-Learning Approach for Monitoring Water Distribution Networks (WDNs)," Sustainability, MDPI, vol. 15(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:12:p:4149-4162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.