IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i4p963-980.html
   My bibliography  Save this article

New Insights Into The Natural Variability of Water Resources in The Lower Jordan River Basin

Author

Listed:
  • Anne Gunkel
  • Jens Lange

Abstract

Water availability is naturally low in the Lower Jordan River Basin (LJRB) extending from Lake Tiberias to the Dead Sea, whereas water demand is high. Still, no basin-wide overview of naturally available surface water resources exists up to now. The aim of this study is to estimate these water resources through application of the TRAIN-ZIN model. This hydrological model combines physically-based and conceptual approaches to incorporate dominant processes of (semi-)arid areas in adequate temporal and spatial scale. An adequate space-time resolution is achieved by using rainfall radar data as model input. Three rainfall seasons are simulated: a drought, an average season and a wet extreme. Simulation results emphasize the non-linear behaviour of (semi-)arid systems and resulting impacts on the spatial and temporal variability of water resources. Basin averages of seasonal water balance components ranged between 65 and 489 mm (rainfall), 53 and 270 mm (evapotranspiration), 7 and 87 mm (overland flow), 4 and 129 mm (percolation). However, all values comprise enormous spatial variability. It is concluded that space-time variability must be considered for water resources assessment in the LJRB in order to make accurate predictions of future water availability. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Anne Gunkel & Jens Lange, 2012. "New Insights Into The Natural Variability of Water Resources in The Lower Jordan River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 963-980, March.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:4:p:963-980
    DOI: 10.1007/s11269-011-9903-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9903-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9903-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molle, Francois, 2006. "Dealing with closed basins: The case of the Lower Jordan River Basin," Conference Papers h039840, International Water Management Institute.
    2. Nassim Al-Abed & Munjed Al-Sharif, 2008. "Hydrological Modeling of Zarqa River Basin – Jordan Using the Hydrological Simulation Program – FORTRAN (HSPF) Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1203-1220, September.
    3. Jason Evans, 2009. "21st century climate change in the Middle East," Climatic Change, Springer, vol. 92(3), pages 417-432, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wouter Buytaert & Jan Friesen & Jens Liebe & Ralf Ludwig, 2012. "Assessment and Management of Water Resources in Developing, Semi-arid and Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 841-844, March.
    2. Christiana Peppard, 2013. "Troubling waters: the Jordan River between religious imagination and environmental degradation," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 3(2), pages 109-119, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djamil Al-Halbouni & Osama AlRabayah & David Nakath & Lars Rüpke, 2022. "A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—How Natural Hazards May Offer Geotourism Opportunities," Land, MDPI, vol. 11(4), pages 1-28, April.
    2. I. Tsanis & M. Apostolaki, 2009. "Estimating Groundwater Withdrawal in Poorly Gauged Agricultural Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1097-1123, April.
    3. Jean-Philippe Venot & François Molle, 2008. "Groundwater Depletion in the Jordan Highlands: Can Pricing Policies Regulate Irrigation Water Use?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1925-1941, December.
    4. Abbas Al-Omari & Saleh Al-Quraan & Adnan Al-Salihi & Fayez Abdulla, 2009. "A Water Management Support System for Amman Zarqa Basin in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3165-3189, December.
    5. G. Comair & D. McKinney & D. Siegel, 2012. "Hydrology of the Jordan River Basin: Watershed Delineation, Precipitation and Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4281-4293, November.
    6. J. Lelieveld & P. Hadjinicolaou & E. Kostopoulou & J. Chenoweth & M. Maayar & C. Giannakopoulos & C. Hannides & M. Lange & M. Tanarhte & E. Tyrlis & E. Xoplaki, 2012. "Climate change and impacts in the Eastern Mediterranean and the Middle East," Climatic Change, Springer, vol. 114(3), pages 667-687, October.
    7. Mohamed Salem Nashwan & Shamsuddin Shahid & Eun-Sung Chung, 2020. "High-Resolution Climate Projections for a Densely Populated Mediterranean Region," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    8. Carly Golodets & Marcelo Sternberg & Jaime Kigel & Bertrand Boeken & Zalmen Henkin & No’am Seligman & Eugene Ungar, 2013. "From desert to Mediterranean rangelands: will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity?," Climatic Change, Springer, vol. 119(3), pages 785-798, August.
    9. Zhaofu Li & Chuan Luo & Kaixia Jiang & Rongrong Wan & Hengpeng Li, 2017. "Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China," IJERPH, MDPI, vol. 14(12), pages 1-18, December.
    10. Sana’a Al-Zyoud & Wolfram Rühaak & Ehsan Forootan & Ingo Sass, 2015. "Over Exploitation of Groundwater in the Centre of Amman Zarqa Basin—Jordan: Evaluation of Well Data and GRACE Satellite Observations," Resources, MDPI, vol. 4(4), pages 1-12, November.
    11. Kadri Yurekli, 2021. "Scrutinizing variability in full and partial rainfall time series by different approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2523-2542, February.
    12. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    13. Ghanian, Mansour & M. Ghoochani, Omid & Dehghanpour, Mojtaba & Taqipour, Milad & Taheri, Fatemeh & Cotton, Matthew, 2020. "Understanding farmers’ climate adaptation intention in Iran: A protection-motivation extended model," Land Use Policy, Elsevier, vol. 94(C).
    14. Kaveh Madani, 2014. "Water management in Iran: what is causing the looming crisis?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 315-328, December.
    15. Arndt, Channing, 2011. "Foreign Assistance in a Climate-Constrained World," WIDER Working Paper Series 066, World Institute for Development Economic Research (UNU-WIDER).
    16. A. Koocheki & M. Nassiri Mahallati & M. Bannayan & F. Yaghoubi, 2022. "Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-30, April.
    17. Fouad H. Saeed & Mahmoud Saleh Al-Khafaji & Furat A. Mahmood Al-Faraj & Vincent Uzomah, 2024. "Sustainable Adaptation Plan in Response to Climate Change and Population Growth in the Iraqi Part of Tigris River Basin," Sustainability, MDPI, vol. 16(7), pages 1-16, March.
    18. Maryam Ghashghaei & Ali Bagheri & Saeed Morid, 2013. "Rainfall-runoff Modeling in a Watershed Scale Using an Object Oriented Approach Based on the Concepts of System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5119-5141, December.
    19. R Varela & L Rodríguez-Díaz & M deCastro, 2020. "Persistent heat waves projected for Middle East and North Africa by the end of the 21st century," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    20. Xin Wan & Guang Wang & Peng Yi & Wei Bao, 2010. "Similarity-Based Optimal Operation of Water and Sediment in a Sediment-Laden Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4381-4402, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:4:p:963-980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.