IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v119y2013i3p785-798.html
   My bibliography  Save this article

From desert to Mediterranean rangelands: will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity?

Author

Listed:
  • Carly Golodets
  • Marcelo Sternberg
  • Jaime Kigel
  • Bertrand Boeken
  • Zalmen Henkin
  • No’am Seligman
  • Eugene Ungar

Abstract

Climate change is predicted to alter the rainfall regime in the Eastern Mediterranean Basin: total annual rainfall will decrease, while seasonal and inter-annual variation in rainfall will increase. Such changes in the rainfall regime could potentially lead to large-scale changes in aboveground net primary productivity (ANPP) in the region. We conducted a data-driven evaluation of herbaceous ANPP along an entire regional rainfall gradient, from desert (90 mm MAR [Mean Annual Rainfall]) to Mesic-Mediterranean (780 mm MAR) ecosystems, using the largest database ever collated for herbaceous ANPP in Israel, with the aim of predicting consequences of climate change for rangeland productivity. This research revealed that herbaceous ANPP increases with increasing rainfall along the gradient, but strong dependence on rainfall was only apparent within dry sites. Rain Use Efficiency peaks at mid-gradient in Mediterranean sites without woody vegetation (560 and 610 mm MAR). Inter-annual coefficients of variation in rainfall and herbaceous ANPP decrease along the rainfall gradient up to ca. 500 mm MAR. Climate change is more likely to affect herbaceous ANPP of rangelands in the arid end of the rainfall gradient, requiring adaptation of rangeland management, while ANPP of rangelands in more mesic ecosystems is less responsive to variation in rainfall. We conclude that herbaceous ANPP in most Mediterranean rangelands is less vulnerable to climate change than generally predicted. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Carly Golodets & Marcelo Sternberg & Jaime Kigel & Bertrand Boeken & Zalmen Henkin & No’am Seligman & Eugene Ungar, 2013. "From desert to Mediterranean rangelands: will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity?," Climatic Change, Springer, vol. 119(3), pages 785-798, August.
  • Handle: RePEc:spr:climat:v:119:y:2013:i:3:p:785-798
    DOI: 10.1007/s10584-013-0758-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0758-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0758-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jason Evans, 2009. "21st century climate change in the Middle East," Climatic Change, Springer, vol. 92(3), pages 417-432, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gongxin Wang & Changqing Jing & Ping Dong & Baoya Qin & Yang Cheng, 2022. "Spatiotemporal Dynamics of Aboveground Biomass and Its Influencing Factors in Xinjiang’s Desert Grasslands," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    2. Martínez-Valderrama, J. & Ibáñez, J. & Ibáñez, M.A. & Alcalá, F.J. & Sanjuán, M.E. & Ruiz, A. & del Barrio, G., 2021. "Assessing the sensitivity of a Mediterranean commercial rangeland to droughts under climate change scenarios by means of a multidisciplinary integrated model," Agricultural Systems, Elsevier, vol. 187(C).
    3. Fust, Pascal & Schlecht, Eva, 2022. "Importance of timing: Vulnerability of semi-arid rangeland systems to increased variability in temporal distribution of rainfall events as predicted by future climate change," Ecological Modelling, Elsevier, vol. 468(C).
    4. Udi Segev & Jaime Kigel & Yael Lubin & Katja Tielbörger, 2015. "Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    5. Lehrer, David & Becker, Nir & Bar, Pua, 2019. "The drivers behind nature conservation cost," Land Use Policy, Elsevier, vol. 89(C).
    6. Ungar, Eugene David, 2019. "Perspectives on the concept of rangeland carrying capacity, and their exploration by means of Noy-Meir's two-function model," Agricultural Systems, Elsevier, vol. 173(C), pages 403-413.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Gunkel & Jens Lange, 2012. "New Insights Into The Natural Variability of Water Resources in The Lower Jordan River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 963-980, March.
    2. Mohamed Salem Nashwan & Shamsuddin Shahid & Eun-Sung Chung, 2020. "High-Resolution Climate Projections for a Densely Populated Mediterranean Region," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    3. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    4. Ghanian, Mansour & M. Ghoochani, Omid & Dehghanpour, Mojtaba & Taqipour, Milad & Taheri, Fatemeh & Cotton, Matthew, 2020. "Understanding farmers’ climate adaptation intention in Iran: A protection-motivation extended model," Land Use Policy, Elsevier, vol. 94(C).
    5. Arndt, Channing, 2011. "Foreign Assistance in a Climate-Constrained World," WIDER Working Paper Series 066, World Institute for Development Economic Research (UNU-WIDER).
    6. A. Koocheki & M. Nassiri Mahallati & M. Bannayan & F. Yaghoubi, 2022. "Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-30, April.
    7. Fouad H. Saeed & Mahmoud Saleh Al-Khafaji & Furat A. Mahmood Al-Faraj & Vincent Uzomah, 2024. "Sustainable Adaptation Plan in Response to Climate Change and Population Growth in the Iraqi Part of Tigris River Basin," Sustainability, MDPI, vol. 16(7), pages 1-16, March.
    8. Sezin Gürsoy & Peter Jacques, 2014. "Water security in the Middle East and North African region," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 310-314, December.
    9. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2017. "Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 108-119.
    10. Hamed, Beheshti, 2011. "The prospective environmental impacts of Iran nuclear energy expansion," Energy Policy, Elsevier, vol. 39(10), pages 6351-6359, October.
    11. Djamil Al-Halbouni & Osama AlRabayah & David Nakath & Lars Rüpke, 2022. "A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—How Natural Hazards May Offer Geotourism Opportunities," Land, MDPI, vol. 11(4), pages 1-28, April.
    12. J. Lelieveld & P. Hadjinicolaou & E. Kostopoulou & J. Chenoweth & M. Maayar & C. Giannakopoulos & C. Hannides & M. Lange & M. Tanarhte & E. Tyrlis & E. Xoplaki, 2012. "Climate change and impacts in the Eastern Mediterranean and the Middle East," Climatic Change, Springer, vol. 114(3), pages 667-687, October.
    13. Kadri Yurekli, 2021. "Scrutinizing variability in full and partial rainfall time series by different approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2523-2542, February.
    14. Kaveh Madani, 2014. "Water management in Iran: what is causing the looming crisis?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 315-328, December.
    15. R Varela & L Rodríguez-Díaz & M deCastro, 2020. "Persistent heat waves projected for Middle East and North Africa by the end of the 21st century," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    16. Nihal Ata Tutkun & Gamze Özel, 2016. "Assessing the influence of climate change characteristics on the rainfall duration of Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2265-2277, December.
    17. Zachariadis, Theodoros & Hadjinicolaou, Panos, 2014. "The effect of climate change on electricity needs – A case study from Mediterranean Europe," Energy, Elsevier, vol. 76(C), pages 899-910.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:119:y:2013:i:3:p:785-798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.