IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i1p253-272.html
   My bibliography  Save this article

Environmental Drivers of Streamflow Change in the Upper Rio Grande

Author

Listed:
  • Ken Mix
  • Vicente Lopes
  • Walter Rast

Abstract

The purpose of this study was to assess changes in streamflow in the Upper Rio Grande (URG) basin, as it exits the San Luis Valley (SLV) at the Lobatos gauge station, in relation to changes in local environmental drivers. Irrigation-dependent agriculture accounts for more than 85% of surface and ground water withdrawals in the SLV. Inflows of the Rio Grande and the Conejos and Los Piños rivers were aggregated into a single inflow into the SLV. Streamflow data were taken from gauges above all major diversions. Results of the analysis indicated annual streamflow at Lobatos declined by 400 hm 3 after 1924, coinciding with increases in surface water extractions. Additional reductions of about 50 hm 3 in annual streamflow, not accounted for by inflow reductions during the period 1925–1964, coincided with increases in groundwater extractions. In contrast, an increase of 12.5 hm 3 in annual streamflow occurred during 1965–2007. The increases coincided with several changes, but were primarily related to extreme peak flow years during the period 1985–1987 and increased water deliveries in compliance with the Rio Grande Compact. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Ken Mix & Vicente Lopes & Walter Rast, 2012. "Environmental Drivers of Streamflow Change in the Upper Rio Grande," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 253-272, January.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:1:p:253-272
    DOI: 10.1007/s11269-011-9916-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9916-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9916-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    2. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    3. Schimmelpfennig, David & Lewandrowski, Jan & Tsigas, Marinos & Parry, Ian, 1996. "Agricultural Adaptation to Climate Change: Issues of Longrun Sustainability," Agricultural Economic Reports 262033, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erik Porse & Samuel Sandoval-Solis & Belize Lane, 2015. "Integrating Environmental Flows into Multi-Objective Reservoir Management for a Transboundary, Water-Scarce River Basin: Rio Grande/Bravo," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2471-2484, June.
    2. Feng Huang & Ziqiang Xia & Fan Li & Lidan Guo & Fucheng Yang, 2012. "Hydrological Changes of the Irtysh River and the Possible Causes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3195-3208, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ken Mix & Vicente Lopes & Walter Rast, 2012. "Growing season expansion and related changes in monthly temperature and growing degree days in the Inter-Montane Desert of the San Luis Valley, Colorado," Climatic Change, Springer, vol. 114(3), pages 723-744, October.
    2. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    3. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. L. Vergni & F. Todisco & B. Lena, 2021. "Evaluation of the similarity between drought indices by correlation analysis and Cohen's Kappa test in a Mediterranean area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2187-2209, September.
    6. Araceli Martin-Candilejo & Francisco J. Martin-Carrasco & Ana Iglesias & Luis Garrote, 2023. "Heading into the Unknown? Exploring Sustainable Drought Management in the Mediterranean Region," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    7. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    8. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    9. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    10. Zhang, Hongliang & Antle, John, 2016. "Assessing Climate Vulnerability of Agricultural Systems Using High-order moments: A Case Study in the U.S. Pacific Northwest," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236233, Agricultural and Applied Economics Association.
    11. Farnaz Pourzand & Kendom Bell, 2021. "How climate affects agricultural land values in Aotearoa New Zealand," Working Papers 21_16, Motu Economic and Public Policy Research.
    12. Drogué, Sophie & Jacquet, Florence & Subervie, Julie, 2014. "Introduction: Farmer’s adaptation to environmental changes," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    13. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    14. Heinz-Peter Witzke & Pavel Ciaian & Jacques Delince, 2014. "CAPRI long-term climate change scenario analysis: The AgMIP approach," JRC Research Reports JRC85872, Joint Research Centre.
    15. Olakojo, Solomon Abayomi & Onanuga, Olaronke Toyin, 2020. "Effects of Climate Change on the Long-run Crops’ Yields in Nigeria," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 11(03), September.
    16. A. S. Giannikopoulou & F. K. Gad & E. Kampragou & D. Assimacopoulos, 2017. "Risk-Based Assessment of Drought Mitigation Options: the Case of Syros Island, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 655-669, January.
    17. Martinsohn, Maria & Hansen, Heiko, 2012. "The Impact of Climate Change on the Economics of Dairy Farming – a Review and Evaluation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(02), pages 1-16, May.
    18. Coral Salvador & Raquel Nieto & Cristina Linares & Julio Díaz & Luis Gimeno, 2020. "Quantification of the Effects of Droughts on Daily Mortality in Spain at Different Timescales at Regional and National Levels: A Meta-Analysis," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    19. Burhan Ozkan & Handan Akcaoz, 2002. "Impacts of climate factors on yields for selected crops in the Southern Turkey," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(4), pages 367-380, December.
    20. Christopher Timmins, 1999. "Estimating the Amenity Costs of Global Warming in Brazil: Getting the Most from Available Data," Working Papers 809, Economic Growth Center, Yale University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:1:p:253-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.