IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v19y2013i2p162-173.html
   My bibliography  Save this article

Adaptive management decision of agroforestry under timber price risk

Author

Listed:
  • Nana, Tian
  • Lu, Fadian

Abstract

In an effort to increase wood production and mitigate environmental problems, agro-forestry practices have emerged as a viable strategy in the Northern Plains of China, where one popular form of the agro-forestry system consists of fast-growing and high-yield plantation of poplar (populus) trees and the underwood planting of button mushroom (Agaricus bisporous). This paper examines adaptive management decision-making with stochastic dynamic programming under risk of timber price. Under the assumption of risk neutral preferences of the investors, the results suggest that the reservation price strategy remains optimal for the harvesting decision of agro-forests: when the timber price is higher than the reservation price, poplar trees should be harvested to end agro-forestry; otherwise, the trees should be retained. Numerical results are presented for sample agro-forest stands, which show that, with underwood planting, the reservation price for timber harvesting will be higher than that in pure forest.

Suggested Citation

  • Nana, Tian & Lu, Fadian, 2013. "Adaptive management decision of agroforestry under timber price risk," Journal of Forest Economics, Elsevier, vol. 19(2), pages 162-173.
  • Handle: RePEc:eee:foreco:v:19:y:2013:i:2:p:162-173
    DOI: 10.1016/j.jfe.2013.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1104689913000056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfe.2013.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pablo C. Benítez & Timo Kuosmanen & Roland Olschewski & G. Cornelis van Kooten, 2006. "Conservation Payments under Risk: A Stochastic Dominance Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 1-15.
    2. G. Cornelis Kooten, 2000. "Economic Dynamics of Tree Planting for Carbon Uptake on Marginal Agricultural Lands," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 48(1), pages 51-65, March.
    3. Lu, Fadian & Gong, Peichen, 2005. "Adaptive thinning strategies for mixed-species stand management with stochastic prices," Journal of Forest Economics, Elsevier, vol. 11(1), pages 53-71, June.
    4. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    5. Palma, J. & Graves, A.R. & Burgess, P.J. & van der Werf, W. & Herzog, F., 2007. "Integrating environmental and economic performance to assess modern silvoarable agroforestry in Europe," Ecological Economics, Elsevier, vol. 63(4), pages 759-767, September.
    6. Franzel, S. & Coe, R. & Cooper, P. & Place, F. & Scherr, S. J., 2001. "Assessing the adoption potential of agroforestry practices in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 69(1-2), pages 37-62.
    7. Lu, Fadian & Gong, Peichen & Lu, Fadian, 2003. "Optimal stocking level and final harvest age with stochastic prices," Journal of Forest Economics, Elsevier, vol. 9(2), pages 119-136.
    8. Sharawi, Huda Abdelwahab, 2006. "Optimal land-use allocation in central Sudan," Forest Policy and Economics, Elsevier, vol. 8(1), pages 10-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Nana & Poudyal, Neelam C. & Lu, Fadian, 2018. "Understanding landowners’ interest and willingness to participate in forest certification program in China," Land Use Policy, Elsevier, vol. 71(C), pages 271-280.
    2. Nana Tian & Neelam Poudyal & Fadian Lu, 2021. "Assessments of Landowners’ Willingness to Accept Compensation for Participating in Forest Certification in Shandong, China," Sustainability, MDPI, vol. 13(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caparros, Alejandro & Cerda, Emilio & Ovando, P. & Campos, Pablo, 2007. "Carbon Sequestration with Reforestations and Biodiversity-Scenic Values," Climate Change Modelling and Policy Working Papers 9323, Fondazione Eni Enrico Mattei (FEEM).
    2. Pablo C. Benítez & Timo Kuosmanen & Roland Olschewski & G. Cornelis van Kooten, 2006. "Conservation Payments under Risk: A Stochastic Dominance Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 1-15.
    3. Ortega-Pacheco, Daniel V. & Keeler, Andrew G. & Jiang, Shiguo, 2019. "Climate change mitigation policy in Ecuador: Effects of land-use competition and transaction costs," Land Use Policy, Elsevier, vol. 81(C), pages 302-310.
    4. Alejandro Caparrós & David Zilberman, 2010. "Optimal carbon sequestration path when different biological or physical sequestration," Working Papers 1018, Instituto de Políticas y Bienes Públicos (IPP), CSIC.
    5. Tahvonen, Olli & Suominen, Antti & Malo, Pekka & Viitasaari, Lauri & Parkatti, Vesa-Pekka, 2022. "Optimizing high-dimensional stochastic forestry via reinforcement learning," Journal of Economic Dynamics and Control, Elsevier, vol. 145(C).
    6. Rasul, Golam & Thapa, Gopal B., 2006. "Financial and economic suitability of agroforestry as an alternative to shifting cultivation: The case of the Chittagong Hill Tracts, Bangladesh," Agricultural Systems, Elsevier, vol. 91(1-2), pages 29-50, November.
    7. Vass, Miriam Münnich & Elofsson, Katarina, 2016. "Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050?," Journal of Forest Economics, Elsevier, vol. 24(C), pages 82-105.
    8. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    9. Tian, Xiaohui & Sohngen, Brent & Sands, Ronald, 2013. "Modeling a Dynamic Forest Sector in a General Equilibrium Framework," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149990, Agricultural and Applied Economics Association.
    10. Veronesi, Marcella & Reutemann, Tim & Zabel, Astrid & Engel, Stefanie, 2015. "Designing REDD+ schemes when forest users are not forest landowners: Evidence from a survey-based experiment in Kenya," Ecological Economics, Elsevier, vol. 116(C), pages 46-57.
    11. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    12. G. Cornelis van Kooten & Sabina Lee Shaikh & Pavel Suchánek, 2002. "Mitigating Climate Change by Planting Trees: The Transaction Costs Trap," Land Economics, University of Wisconsin Press, vol. 78(4), pages 559-572.
    13. Bingkui Qiu & Shasha Lu & Min Zhou & Lu Zhang & Yu Deng & Ci Song & Zuo Zhang, 2015. "A Hybrid Inexact Optimization Method for Land-Use Allocation in Association with Environmental/Ecological Requirements at a Watershed Level," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    14. Williams, Byron K., 2009. "Markov decision processes in natural resources management: Observability and uncertainty," Ecological Modelling, Elsevier, vol. 220(6), pages 830-840.
    15. Gregmar Galinato & Shinsuke Uchida, 2010. "Evaluating Temporary Certified Emission Reductions in Reforestation and Afforestation Programs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(1), pages 111-133, May.
    16. David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
    17. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    18. Mario A. Fernandez & Adam J. Daigneault, 2018. "Money Does Grow On Trees: Impacts Of The Paris Agreement On The New Zealand Economy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-23, August.
    19. Graeme Guthrie & Dinesh Kumareswaran, 2009. "Carbon Subsidies, Taxes and Optimal Forest Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 275-293, June.
    20. Rakotoarison, Hanitra & Loisel, Patrice, 2016. "The Faustmann model under storm risk and price uncertainty: A case study of European beech in Northwestern France," MPRA Paper 85114, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:19:y:2013:i:2:p:162-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.