IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v22y2008i2p217-227.html
   My bibliography  Save this article

The Research of Monthly Discharge Predictor-corrector Model Based on Wavelet Decomposition

Author

Listed:
  • Hui-cheng Zhou
  • Yong Peng
  • Guo-hua Liang

Abstract

Based on wavelet analysis theory, a wavelet predictor-corrector model is developed for the simulation and prediction of monthly discharge time series. In this model, the non-stationary time series of monthly discharge is decomposed into an approximated time series and several stationary detail time series according to the principle of wavelet decomposition. Each one of the decomposed time series is predicted, respectively, through the ARMA model for stationary time series. Then the correction procedure is conducted for the sum of the prediction results. Taking the monthly discharge at Yichang station of Yangtse River as an example, the monthly discharge is simulated by using ARMA model, seasonal ARIMA model, BP artificial neural network model and the wavelet predictor-corrector model proposed in this article, respectively. And the effect of decomposition scale for the wavelet predictor-corrector model is also discussed. It is shown that the wavelet predictor-corrector model has higher prediction accuracy than the some other models and the decomposition scale has no obvious effect on the prediction for monthly discharge time series in the example. Copyright Springer Science+Business Media, Inc. 2008

Suggested Citation

  • Hui-cheng Zhou & Yong Peng & Guo-hua Liang, 2008. "The Research of Monthly Discharge Predictor-corrector Model Based on Wavelet Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 217-227, February.
  • Handle: RePEc:spr:waterr:v:22:y:2008:i:2:p:217-227
    DOI: 10.1007/s11269-006-9152-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-9152-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-9152-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Agarwal & R. Maheswaran & J Kurths & R. Khosa, 2016. "Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4399-4413, September.
    2. Ozgur Kisi, 2011. "Wavelet Regression Model as an Alternative to Neural Networks for River Stage Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 579-600, January.
    3. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    4. Jaydip Makwana & Mukesh Tiwari, 2014. "Intermittent Streamflow Forecasting and Extreme Event Modelling using Wavelet based Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4857-4873, October.
    5. Manish Goyal, 2014. "Modeling of Sediment Yield Prediction Using M5 Model Tree Algorithm and Wavelet Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1991-2003, May.
    6. Vahid Nourani & Mehdi Komasi & Akira Mano, 2009. "A Multivariate ANN-Wavelet Approach for Rainfall–Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2877-2894, November.
    7. Ozgur Kisi & Jalal Shiri, 2011. "Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3135-3152, October.
    8. Sanjeet Kumar & Mukesh Tiwari & Chandranath Chatterjee & Ashok Mishra, 2015. "Reservoir Inflow Forecasting Using Ensemble Models Based on Neural Networks, Wavelet Analysis and Bootstrap Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4863-4883, October.
    9. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    10. Thendiyath Roshni & Madan K. Jha & Ravinesh C. Deo & A. Vandana, 2019. "Development and Evaluation of Hybrid Artificial Neural Network Architectures for Modeling Spatio-Temporal Groundwater Fluctuations in a Complex Aquifer System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2381-2397, May.
    11. Vinit Sehgal & Rajeev Sahay & Chandranath Chatterjee, 2014. "Effect of Utilization of Discrete Wavelet Components on Flood Forecasting Performance of Wavelet Based ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1733-1749, April.
    12. Vinit Sehgal & Mukesh Tiwari & Chandranath Chatterjee, 2014. "Wavelet Bootstrap Multiple Linear Regression Based Hybrid Modeling for Daily River Discharge Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2793-2811, August.
    13. Maryam Shafaei & Ozgur Kisi, 2016. "Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 79-97, January.
    14. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:22:y:2008:i:2:p:217-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.