IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v32y2024i1d10.1007_s11750-023-00659-3.html
   My bibliography  Save this article

Berge equilibria and the equilibria of the altruistic game

Author

Listed:
  • A. Zapata

    (Universidad de Sevilla)

  • A. M. Mármol

    (Universidad de Sevilla)

  • L. Monroy

    (Universidad de Sevilla)

Abstract

Berge’s notion of equilibrium represents a complementary alternative to the Nash equilibrium when modeling socioeconomic behavior and human interactions. While the notion of Nash equilibrium is based on self-interest, as players seek to maximize their own payoffs given the action of the other players, the idea behind Berge equilibrium is mutual support, as given the action of one of the players, all others select their actions looking for her best interest. However, because of the demanding conditions involved, the existence of Berge equilibria is rarely guaranteed. In this paper, we propose vector-valued normal-form games as a unified framework in which to study and extend the concept of Berge equilibrium. Based on the equilibria of the so-called altruistic game, we introduce new equilibrium concepts which constitute different relaxations of Berge’s notion, although they still retain the underlying idea of mutual support. We establish the links between these new equilibria, Nash equilibrium, Berge equilibrium, and other related concepts already existing in the literature. Our approach has the advantage that it permits the incorporation of preference information to identify the equilibria which are consistent with different altruistic attitudes of the players.

Suggested Citation

  • A. Zapata & A. M. Mármol & L. Monroy, 2024. "Berge equilibria and the equilibria of the altruistic game," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 83-105, April.
  • Handle: RePEc:spr:topjnl:v:32:y:2024:i:1:d:10.1007_s11750-023-00659-3
    DOI: 10.1007/s11750-023-00659-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-023-00659-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-023-00659-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A.M. Colman & T.W. Körner & O. Musy & T. Tazdaït, 2011. "Mutual support in games: Some properties of Berge equilibria," Post-Print hal-00716357, HAL.
    2. Courtois, Pierre & Nessah, Rabia & Tazdaït, Tarik, 2017. "Existence and computation of Berge equilibrium and of two refinements," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 7-15.
    3. Larbani, Moussa & Nessah, Rabia, 2008. "A note on the existence of Berge and Berge-Nash equilibria," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 258-271, March.
    4. Mark Voorneveld & Sofia Grahn & Martin Dufwenberg, 2000. "Ideal equilibria in noncooperative multicriteria games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(1), pages 65-77, September.
    5. Bertrand Crettez, 2017. "A New Sufficient Condition for a Berge Equilibrium to be a Berge–Vaisman Equilibrium," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 451-459, September.
    6. Crettez, Bertrand & Nessah, Rabia, 2020. "On the existence of unilateral support equilibrium," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 41-47.
    7. L. S. Shapley & Fred D. Rigby, 1959. "Equilibrium points in games with vector payoffs," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(1), pages 57-61, March.
    8. Sophie Bade, 2005. "Nash equilibrium in games with incomplete preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 309-332, August.
    9. Bertrand Crettez & Rabia Nessah, 2020. "On the existence of unilateral support equilibrium," Post-Print hal-04129341, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schouten, Jop, 2022. "Cooperation, allocation and strategy in interactive decision-making," Other publications TiSEM d5d41448-8033-4f6b-8ec0-c, Tilburg University, School of Economics and Management.
    2. Bertrand Crettez, 2019. "Unilateral Support Equilibrium, Berge Equilibrium, and Team Problems Solutions," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 727-739, December.
    3. Courtois, Pierre & Nessah, Rabia & Tazdaït, Tarik, 2017. "Existence and computation of Berge equilibrium and of two refinements," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 7-15.
    4. Scalzo, Vincenzo, 2023. "Existence and stability results on the unilateral support equilibrium," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 1-9.
    5. Sasaki, Yasuo, 2022. "Unawareness of decision criteria in multicriteria games," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 31-40.
    6. Schouten, Jop & Borm, Peter & Hendrickx, Ruud, 2018. "Unilateral Support Equilibria," Other publications TiSEM 02dd1da8-0dad-48f8-8fe1-6, Tilburg University, School of Economics and Management.
    7. Yasuo Sasaki, 2019. "Rationalizability in multicriteria games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 673-685, June.
    8. A. Zapata & A. M. Mármol & L. Monroy & M. A. Caraballo, 2019. "A Maxmin Approach for the Equilibria of Vector-Valued Games," Group Decision and Negotiation, Springer, vol. 28(2), pages 415-432, April.
    9. Hans Haller, 2024. "Berge equilibrium, altruism and social welfare," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 62(4), pages 839-860, June.
    10. Bertrand Crettez, 2017. "A New Sufficient Condition for a Berge Equilibrium to be a Berge–Vaisman Equilibrium," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 451-459, September.
    11. Juho Kokkala & Kimmo Berg & Kai Virtanen & Jirka Poropudas, 2019. "Rationalizable strategies in games with incomplete preferences," Theory and Decision, Springer, vol. 86(2), pages 185-204, March.
    12. Ping Sun & Elena Parilina, 2025. "Hybrid altruistic-Nash equilibrium: existence and characterization," International Journal of Game Theory, Springer;Game Theory Society, vol. 54(1), pages 1-29, June.
    13. Antonin Pottier & Rabia Nessah, 2014. "Berge–Vaisman And Nash Equilibria: Transformation Of Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-8.
    14. Anna Rettieva, 2018. "Dynamic Multicriteria Games with Finite Horizon," Mathematics, MDPI, vol. 6(9), pages 1-9, September.
    15. De Magistris, Enrico, 2024. "Incomplete preferences or incomplete information? On Rationalizability in games with private values," Games and Economic Behavior, Elsevier, vol. 144(C), pages 126-140.
    16. A. Zapata & A. M. Mármol & L. Monroy & M. A. Caraballo, 2024. "Altruistic preferences in global emission games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(3), pages 843-864, September.
    17. Ahmad Nahhas & H. W. Corley, 2017. "A Nonlinear Programming Approach to Determine a Generalized Equilibrium for N-Person Normal Form Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-15, September.
    18. Monica Milasi & Domenico Scopelliti, 2021. "A Variational Approach to the Maximization of Preferences Without Numerical Representation," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 879-893, September.
    19. Zachary Feinstein & Birgit Rudloff, 2021. "Characterizing and Computing the Set of Nash Equilibria via Vector Optimization," Papers 2109.14932, arXiv.org, revised Dec 2022.
    20. Anna N. Rettieva, 2020. "Cooperation in dynamic multicriteria games with random horizons," Journal of Global Optimization, Springer, vol. 76(3), pages 455-470, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:32:y:2024:i:1:d:10.1007_s11750-023-00659-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.