IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v32y2024i1d10.1007_s11750-023-00656-6.html
   My bibliography  Save this article

Reoptimisation strategies for dynamic vehicle routing problems with proximity-dependent nodes

Author

Listed:
  • Tiria Andersen

    (James Cook University)

  • Shaun Belward

    (James Cook University)

  • Mangalam Sankupellay

    (James Cook University)

  • Trina Myers

    (Queensland University of Technology)

  • Carla Chen

    (James Cook University)

Abstract

Autonomous vehicles create new opportunities as well as new challenges to dynamic vehicle routing. The introduction of autonomous vehicles as information-collecting agents results in scenarios, where dynamic nodes are found by proximity. This paper presents a novel dynamic vehicle-routing problem variant with proximity-dependent nodes. Here, we introduced a novel variable, detectability, which determines whether a proximal dynamic node will be detected, based on the sight radius of the vehicle. The problem considered is motivated by autonomous weed-spraying vehicles in large agricultural operations. This work is generalisable to many other autonomous vehicle applications. The first step to crafting a solution approach for the problem is to decide when reoptimisation should be triggered. Two reoptimisation trigger strategies are considered—exogenous and endogenous. Computational experiments compared the strategies for both the classical dynamic vehicle routing problem as well as the introduced variant. Experiments used extensive standardised vehicle-routing problem benchmarks with varying degrees of dynamism and geographical node distributions. The results showed that for both the classical problem and the novel variant, an endogenous trigger strategy is better in most cases, while an exogenous trigger strategy is only suitable when both detectability and dynamism are low. Furthermore, the optimal level of detectability was shown to be dependent on the combination of trigger, degree of dynamism, and geographical node distribution, meaning practitioners may determine the required detectability based on the attributes of their specific problem.

Suggested Citation

  • Tiria Andersen & Shaun Belward & Mangalam Sankupellay & Trina Myers & Carla Chen, 2024. "Reoptimisation strategies for dynamic vehicle routing problems with proximity-dependent nodes," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-21, April.
  • Handle: RePEc:spr:topjnl:v:32:y:2024:i:1:d:10.1007_s11750-023-00656-6
    DOI: 10.1007/s11750-023-00656-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-023-00656-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-023-00656-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    2. Sahar Bsaybes & Alain Quilliot & Annegret K. Wagler, 2019. "Fleet management for autonomous vehicles using flows in time-expanded networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 288-311, July.
    3. Orhan Karasakal, 2016. "Minisum and maximin aerial surveillance over disjoint rectangles," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 705-724, October.
    4. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    5. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
    6. Laoucine Kerbache & T. van Woensel & N. Vandaele & Herbert Peremans, 2008. "Vehicle routing with dynamic travel times: A queueing approach," Post-Print hal-00465127, HAL.
    7. Chen, Cheng & Demir, Emrah & Huang, Yuan, 2021. "An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1164-1180.
    8. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    9. Van Woensel, T. & Kerbache, L. & Peremans, H. & Vandaele, N., 2008. "Vehicle routing with dynamic travel times: A queueing approach," European Journal of Operational Research, Elsevier, vol. 186(3), pages 990-1007, May.
    10. Ulrike Ritzinger & Jakob Puchinger & Richard F. Hartl, 2016. "A survey on dynamic and stochastic vehicle routing problems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 215-231, January.
    11. Ferrucci, Francesco & Bock, Stefan & Gendreau, Michel, 2013. "A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods," European Journal of Operational Research, Elsevier, vol. 225(1), pages 130-141.
    12. Ferrucci, Francesco & Bock, Stefan, 2015. "A general approach for controlling vehicle en-route diversions in dynamic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 76-87.
    13. Richard Eglese & Sofoclis Zambirinis, 2018. "Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-17, April.
    14. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126189, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Richard Eglese & Sofoclis Zambirinis, 2018. "Rejoinder on: Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 27-29, April.
    16. Marlin W. Ulmer & Leonard Heilig & Stefan Voß, 2017. "On the Value and Challenge of Real-Time Information in Dynamic Dispatching of Service Vehicles," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 161-171, June.
    17. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    18. Moshe Dror & Gilbert Laporte & Pierre Trudeau, 1989. "Vehicle Routing with Stochastic Demands: Properties and Solution Frameworks," Transportation Science, INFORMS, vol. 23(3), pages 166-176, August.
    19. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2000. "Diversion Issues in Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 34(4), pages 426-438, November.
    20. B. Boffey & Francisco García & Gilbert Laporte & Juan Mesa & Blas Pelegrín, 1995. "Multiobjective routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(2), pages 167-220, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Aderemi Oluyinka Adewumi & Olawale Joshua Adeleke, 2018. "A survey of recent advances in vehicle routing problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 155-172, February.
    4. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    5. Bock, Stefan, 2024. "Vehicle routing for connected service areas - a versatile approach covering single, hierarchical, and bi-criteria objectives," European Journal of Operational Research, Elsevier, vol. 313(3), pages 905-925.
    6. Marlin W. Ulmer & Leonard Heilig & Stefan Voß, 2017. "On the Value and Challenge of Real-Time Information in Dynamic Dispatching of Service Vehicles," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 161-171, June.
    7. Ostermeier, Manuel & Heimfarth, Andreas & Hübner, Alexander, 2023. "The multi-vehicle truck-and-robot routing problem for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 310(2), pages 680-697.
    8. Giménez-Palacios, Iván & Parreño, Francisco & Álvarez-Valdés, Ramón & Paquay, Célia & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2022. "First-mile logistics parcel pickup: Vehicle routing with packing constraints under disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    10. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    11. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    12. Ozbaygin, Gizem & Savelsbergh, Martin, 2019. "An iterative re-optimization framework for the dynamic vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 207-235.
    13. Alfandari, Laurent & Ljubić, Ivana & De Melo da Silva, Marcos, 2022. "A tailored Benders decomposition approach for last-mile delivery with autonomous robots," European Journal of Operational Research, Elsevier, vol. 299(2), pages 510-525.
    14. Ninja Soeffker & Marlin W. Ulmer & Dirk C. Mattfeld, 2024. "Balancing resources for dynamic vehicle routing with stochastic customer requests," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(2), pages 331-373, June.
    15. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    16. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    17. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    18. Nasreddine Ouertani & Hajer Ben-Romdhane & Saoussen Krichen, 2022. "A decision support system for the dynamic hazardous materials vehicle routing problem," Operational Research, Springer, vol. 22(1), pages 551-576, March.
    19. Ferrucci, Francesco & Bock, Stefan, 2015. "A general approach for controlling vehicle en-route diversions in dynamic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 76-87.
    20. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:32:y:2024:i:1:d:10.1007_s11750-023-00656-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.