IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v195y2009i1p46-61.html
   My bibliography  Save this article

Solving the ordered one-median problem in the plane

Author

Listed:
  • Drezner, Zvi
  • Nickel, Stefan

Abstract

In this paper, we propose a general approach solution method for the single facility ordered median problem in the plane. All types of weights (non-negative, non-positive, and mixed) are considered. The big triangle small triangle approach is used for the solution. Rigorous and heuristic algorithms are proposed and extensively tested on eight different problems with excellent results.

Suggested Citation

  • Drezner, Zvi & Nickel, Stefan, 2009. "Solving the ordered one-median problem in the plane," European Journal of Operational Research, Elsevier, vol. 195(1), pages 46-61, May.
  • Handle: RePEc:eee:ejores:v:195:y:2009:i:1:p:46-61
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00234-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tammy Drezner & Zvi Drezner, 2007. "Equity Models in Planar Location," Computational Management Science, Springer, vol. 4(1), pages 1-16, January.
    2. Jack Elzinga & Donald W. Hearn, 1972. "Geometrical Solutions for Some Minimax Location Problems," Transportation Science, INFORMS, vol. 6(4), pages 379-394, November.
    3. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    4. Antonio M. Rodríguez-Chía & Stefan Nickel & Justo Puerto & Francisco R. Fernández, 2000. "A flexible approach to location problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(1), pages 69-89, February.
    5. O Berman & Z Drezner & G O Wesolowsky, 2003. "The expropriation location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(7), pages 769-776, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Blanco & Justo Puerto & Safae El Haj Ben Ali, 2014. "Revisiting several problems and algorithms in continuous location with $$\ell _\tau $$ ℓ τ norms," Computational Optimization and Applications, Springer, vol. 58(3), pages 563-595, July.
    2. Drezner, Tammy & Drezner, Zvi & Hulliger, Beat, 2014. "The Quintile Share Ratio in location analysis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 166-174.
    3. Schöbel, Anita & Scholz, Daniel, 2014. "A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 266-275.
    4. Ting L. Lei & Richard L. Church, 2014. "Vector Assignment Ordered Median Problem," International Regional Science Review, , vol. 37(2), pages 194-224, April.
    5. Rodríguez-Chía, Antonio M. & Espejo, Inmaculada & Drezner, Zvi, 2010. "On solving the planar k-centrum problem with Euclidean distances," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1169-1186, December.
    6. Frank Plastria & Mohamed Elosmani, 2013. "Continuous location of an assembly station," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 323-340, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    2. Schnepper, Teresa & Klamroth, Kathrin & Stiglmayr, Michael & Puerto, Justo, 2019. "Exact algorithms for handling outliers in center location problems on networks using k-max functions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 441-451.
    3. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    4. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    5. Drezner, Tammy & Drezner, Zvi & Hulliger, Beat, 2014. "The Quintile Share Ratio in location analysis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 166-174.
    6. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    7. Zvi Drezner & Pawel Kalczynski, 2017. "The continuous grey pattern problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 469-483, May.
    8. Zvi Drezner & Carlton Scott, 2013. "Location of a distribution center for a perishable product," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(3), pages 301-314, December.
    9. Tammy Drezner & Zvi Drezner, 2011. "A note on equity across groups in facility location," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(7), pages 705-711, October.
    10. Zvi Drezner & Jack Brimberg, 2014. "Fitting concentric circles to measurements," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 119-133, February.
    11. Schöbel, Anita & Scholz, Daniel, 2014. "A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 266-275.
    12. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    13. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2021. "Directional approach to gradual cover: the continuous case," Computational Management Science, Springer, vol. 18(1), pages 25-47, January.
    14. Rodríguez-Chía, Antonio M. & Espejo, Inmaculada & Drezner, Zvi, 2010. "On solving the planar k-centrum problem with Euclidean distances," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1169-1186, December.
    15. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.
    16. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    17. Mark Rozanov & Arie Tamir, 2018. "The nestedness property of location problems on the line," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 257-282, July.
    18. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    19. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    20. Daniel Scholz, 2013. "Geometric branch-and-bound methods for constrained global optimization problems," Journal of Global Optimization, Springer, vol. 57(3), pages 771-782, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:195:y:2009:i:1:p:46-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.