IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v84y2022i2d10.1007_s13571-022-00287-0.html
   My bibliography  Save this article

An Alternative to the Oversimplifying Benford’s Law in Experimental Fields

Author

Listed:
  • Stéphane Blondeau Da Silva

    (Rectorat de Limoges)

Abstract

A way to model the distribution of first digits in some naturally occurring collections of data is here highlighted. The proportion of d as leading digit, d ∈⟦1,9⟧, in data is sometimes more likely to follow a specific law whose probability distribution is determined by a lower and an upper bound, rather than Benford’s Law, as one might have expected. These peculiar probability distributions fluctuate around Benford’s values, such fluctuations having often been observed in the literature in experimental data sets (where the physical, biological or economical quantities considered are lower and upper bounded). Knowing beforehand the values of these bounds enables to find, through the developed model, a better adjusted law than Benford’s one.

Suggested Citation

  • Stéphane Blondeau Da Silva, 2022. "An Alternative to the Oversimplifying Benford’s Law in Experimental Fields," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 778-808, November.
  • Handle: RePEc:spr:sankhb:v:84:y:2022:i:2:d:10.1007_s13571-022-00287-0
    DOI: 10.1007/s13571-022-00287-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-022-00287-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-022-00287-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernhard Rauch & Max Göttsche & Gernot Brähler & Stefan Engel, 2011. "Fact and Fiction in EU‐Governmental Economic Data," German Economic Review, Verein für Socialpolitik, vol. 12(3), pages 243-255, August.
    2. Deckert, Joseph & Myagkov, Mikhail & Ordeshook, Peter C., 2011. "Benford's Law and the Detection of Election Fraud," Political Analysis, Cambridge University Press, vol. 19(3), pages 245-268, July.
    3. Tam Cho, Wendy K. & Gaines, Brian J., 2007. "Breaking the (Benford) Law: Statistical Fraud Detection in Campaign Finance," The American Statistician, American Statistical Association, vol. 61, pages 218-223, August.
    4. Clippe, Paulette & Ausloos, Marcel, 2012. "Benford’s law and Theil transform of financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6556-6567.
    5. Ricardo Sartori Cella & Ercilio Zanolla, 2018. "Benford’s Law and transparency: an analysis of municipal expenditure," Brazilian Business Review, Fucape Business School, vol. 15(4), pages 331-347, July.
    6. James L Friar & Terrance Goldman & Juan Pérez–Mercader, 2012. "Genome Sizes and the Benford Distribution," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    7. Fewster, R. M., 2009. "A Simple Explanation of Benford's Law," The American Statistician, American Statistical Association, vol. 63(1), pages 26-32.
    8. Andreas Diekmann, 2007. "Not the First Digit! Using Benford's Law to Detect Fraudulent Scientif ic Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(3), pages 321-329.
    9. Mir, T.A., 2014. "The Benford law behavior of the religious activity data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montag, Josef, 2017. "Identifying odometer fraud in used car market data," Transport Policy, Elsevier, vol. 60(C), pages 10-23.
    2. Tariq Ahmad Mir & Marcel Ausloos & Roy Cerqueti, 2014. "Benford's law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions," Papers 1410.2890, arXiv.org.
    3. Lee, Kang-Bok & Han, Sumin & Jeong, Yeasung, 2020. "COVID-19, flattening the curve, and Benford’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    4. Vadim S. Balashov & Yuxing Yan & Xiaodi Zhu, 2020. "Who Manipulates Data During Pandemics? Evidence from Newcomb-Benford Law," Papers 2007.14841, arXiv.org, revised Jan 2021.
    5. Willis A. Jones, 2020. "A Benford Analysis of National Collegiate Athletic Association Division I Finance Data," Journal of Sports Economics, , vol. 21(3), pages 234-255, April.
    6. Holz, Carsten A., 2014. "The quality of China's GDP statistics," China Economic Review, Elsevier, vol. 30(C), pages 309-338.
    7. Montag, Josef, 2015. "Identifying Odometer Fraud: Evidence from the Used Car Market in the Czech Republic," MPRA Paper 65182, University Library of Munich, Germany.
    8. José A. Álvarez-Jareño & Elena Badal-Valero & José Manuel Pavía, 2017. "Using machine learning for financial fraud detection in the accounts of companies investigated for money laundering," Working Papers 2017/07, Economics Department, Universitat Jaume I, Castellón (Spain).
    9. Mir, T.A., 2014. "The Benford law behavior of the religious activity data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 1-9.
    10. Cerqueti, Roy & Maggi, Mario, 2021. "Data validity and statistical conformity with Benford’s Law," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Ausloos, Marcel & Castellano, Rosella & Cerqueti, Roy, 2016. "Regularities and discrepancies of credit default swaps: a data science approach through Benford's law," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 8-17.
    12. Ausloos, M. & Herteliu, C. & Ileanu, B., 2015. "Breakdown of Benford’s law for birth data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 736-745.
    13. Venuka Aggarwal & Khushdeep Dharni, 2020. "Deshelling the Shell Companies Using Benford’s Law: An Emerging Market Study," Vikalpa: The Journal for Decision Makers, , vol. 45(3), pages 160-169, September.
    14. Roy Cerqueti & Claudio Lupi, 2023. "Severe testing of Benford’s law," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 677-694, June.
    15. Sitsofe Tsagbey & Miguel de Carvalho & Garritt L. Page, 2017. "All Data are Wrong, but Some are Useful? Advocating the Need for Data Auditing," The American Statistician, Taylor & Francis Journals, vol. 71(3), pages 231-235, July.
    16. Philip E Hulme & Danish A Ahmed & Phillip J Haubrock & Brooks A Kaiser & Melina Kourantidou & Boris Leroy & Shana M Mcdermott, 2024. "Widespread imprecision in estimates of the economic costs of invasive alien species worldwide," Post-Print hal-04633043, HAL.
    17. Kauko, Karlo, 2019. "Benford's law and Chinese banks' non-performing loans," BOFIT Discussion Papers 25/2019, Bank of Finland Institute for Emerging Economies (BOFIT).
    18. Matthew A. Cole & David J. Maddison & Liyun Zhang, 2020. "Testing the emission reduction claims of CDM projects using the Benford’s Law," Climatic Change, Springer, vol. 160(3), pages 407-426, June.
    19. Roy Cerqueti & Claudio Lupi, 2021. "Some New Tests of Conformity with Benford’s Law," Stats, MDPI, vol. 4(3), pages 1-17, September.
    20. Wójcik, Michał Ryszard, 2014. "A characterization of Benford’s law through generalized scale-invariance," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 1-5.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:84:y:2022:i:2:d:10.1007_s13571-022-00287-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.