IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v95y2024ics0038012124002076.html
   My bibliography  Save this article

Validating Benfordness on contaminated data

Author

Listed:
  • Di Marzio, Marco
  • Fensore, Stefania
  • Passamonti, Chiara

Abstract

Benford’s law is a mathematical model, very recurrent in practice for a wide variety of datasets, used to represent the frequencies of digits. A well-established usage of Benfordness statistical testing lies within investigations aimed to ascertain if balance sheet and income statement data are genuine. A typical, frustrating problem of Benfordness statistical tests on big, practical datasets is that they often provide p-valuessmaller than expected when the Benfordness null hypothesis is very realistic. A possible reason is that data are contaminated by some kind of noise. In this paper we propose the deconvolution approach to alleviate this issue, using both simulated and real data.

Suggested Citation

  • Di Marzio, Marco & Fensore, Stefania & Passamonti, Chiara, 2024. "Validating Benfordness on contaminated data," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124002076
    DOI: 10.1016/j.seps.2024.102008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012124002076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.102008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124002076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.