IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i4d10.1007_s11749-019-00684-0.html
   My bibliography  Save this article

Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem

Author

Listed:
  • Domingo Morales

    (Universidad Miguel Hernández de Elche)

Abstract

No abstract is available for this item.

Suggested Citation

  • Domingo Morales, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1068-1070, December.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:4:d:10.1007_s11749-019-00684-0
    DOI: 10.1007/s11749-019-00684-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-019-00684-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-019-00684-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menendez, M. & Morales, D. & Pardo, L. & Vajda, I., 1995. "Divergence-Based Estimation and Testing of Statistical Models of Classification," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 329-354, August.
    2. Danny Pfeffermann & Anna Sikov & Richard Tiller, 2014. "Single- and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 631-666, December.
    3. Danny Pfeffermann & Anna Sikov & Richard Tiller, 2014. "Rejoinder on: Single- and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 686-690, December.
    4. M. Ugarte & A. Militino & T. Goicoa, 2009. "Benchmarked estimates in small areas using linear mixed models with restrictions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 342-364, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elaheh Torkashvand & Mohammad Jafari Jozani & Mahmoud Torabi, 2016. "Constrained Bayes estimation in small area models with functional measurement error," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 710-730, December.
    2. Newhouse,David Locke & Merfeld,Joshua David & Ramakrishnan,Anusha Pudugramam & Swartz,Tom & Lahiri,Partha, 2022. "Small Area Estimation of Monetary Poverty in Mexico Using Satellite Imagery and Machine Learning," Policy Research Working Paper Series 10175, The World Bank.
    3. Oksana Bollineni‐Balabay & Jan van den Brakel & Franz Palm & Harm Jan Boonstra, 2017. "Multilevel hierarchical Bayesian versus state space approach in time series small area estimation: the Dutch Travel Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1281-1308, October.
    4. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    5. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    6. Zhang Junni L. & Bryant John, 2020. "Fully Bayesian Benchmarking of Small Area Estimation Models," Journal of Official Statistics, Sciendo, vol. 36(1), pages 197-223, March.
    7. Rebecca Steorts & M. Ugarte, 2014. "Comments on: “Single and two-stage cross-sectional and time series benchmarking procedures for small area estimation”," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 680-685, December.
    8. Wegenkittl, Stefan, 2002. "A Generalized [phi]-Divergence for Asymptotically Multivariate Normal Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 288-302, November.
    9. Tomáš Hobza & Domingo Morales & Leandro Pardo, 2014. "Divergence-based tests of homogeneity for spatial data," Statistical Papers, Springer, vol. 55(4), pages 1059-1077, November.
    10. Leorato, S., 2009. "A refined Jensen's inequality in Hilbert spaces and empirical approximations," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 1044-1060, May.
    11. Paul A. Smith & Chiara Bocci & Nikos Tzavidis & Sabine Krieg & Marc J. E. Smeets, 2021. "Robust estimation for small domains in business surveys," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 312-334, March.
    12. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
    13. Masaki,Takaaki & Newhouse,David Locke & Silwal,Ani Rudra & Bedada,Adane & Engstrom,Ryan, 2020. "Small Area Estimation of Non-Monetary Poverty with Geospatial Data," Policy Research Working Paper Series 9383, The World Bank.
    14. Morales, D. & Pardo, L. & Vajda, I., 2003. "Asymptotic laws for disparity statistics in product multinomial models," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 335-360, May.
    15. Danny Pfeffermann & Anna Sikov & Richard Tiller, 2014. "Single- and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 631-666, December.
    16. Ángel Felipe & María Jaenada & Pedro Miranda & Leandro Pardo, 2023. "Restricted Distance-Type Gaussian Estimators Based on Density Power Divergence and Their Applications in Hypothesis Testing," Mathematics, MDPI, vol. 11(6), pages 1-41, March.
    17. Domingo Morales, 2014. "Comments on: Single and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 674-679, December.
    18. Malay Ghosh & Rebecca Steorts, 2013. "Two-stage benchmarking as applied to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 670-687, November.
    19. Militino, A.F. & Goicoa, T. & Ugarte, M.D., 2012. "Estimating the percentage of food expenditure in small areas using bias-corrected P-spline based estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2934-2948.
    20. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:4:d:10.1007_s11749-019-00684-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.