IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i2d10.1007_s11749-019-00648-4.html
   My bibliography  Save this article

Comments on: Data science, big data and statistics

Author

Listed:
  • Stefan Aelst

    (KU Leuven)

  • Ruben H. Zamar

    (University of British Columbia)

Abstract

No abstract is available for this item.

Suggested Citation

  • Stefan Aelst & Ruben H. Zamar, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 360-362, June.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:2:d:10.1007_s11749-019-00648-4
    DOI: 10.1007/s11749-019-00648-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-019-00648-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-019-00648-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Aelst, Stefan & (Steven) Wang, Xiaogang & Zamar, Ruben H. & Zhu, Rong, 2006. "Linear grouping using orthogonal regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1287-1312, March.
    2. Claudio Agostinelli & Andy Leung & Victor Yohai & Ruben Zamar, 2015. "Rejoinder on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 484-488, September.
    3. Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
    4. L. A. García‐Escudero & A. Gordaliza & R. San Martín & S. Van Aelst & R. Zamar, 2009. "Robust linear clustering," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 301-318, January.
    5. Leung, Andy & Yohai, Victor & Zamar, Ruben, 2017. "Multivariate location and scatter matrix estimation under cellwise and casewise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 59-76.
    6. Claudio Agostinelli & Andy Leung & Victor Yohai & Ruben Zamar, 2015. "Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 441-461, September.
    7. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2007. "Robust Linear Model Selection Based on Least Angle Regression," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1289-1299, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    2. Stephane Heritier & Maria-Pia Victoria-Feser, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 595-602, December.
    3. Leung, Andy & Yohai, Victor & Zamar, Ruben, 2017. "Multivariate location and scatter matrix estimation under cellwise and casewise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 59-76.
    4. Christophe Croux & Viktoria Öllerer, 2015. "Comments on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 462-466, September.
    5. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    6. García-Escudero, L.A. & Gordaliza, A. & Mayo-Iscar, A. & San Martín, R., 2010. "Robust clusterwise linear regression through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3057-3069, December.
    7. Andrea Cerioli & Domenico Perrotta, 2014. "Robust clustering around regression lines with high density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 5-26, March.
    8. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    9. Luca Sartore & Lu Chen & Valbona Bejleri, 2024. "Empirical Inferences Under Bayesian Framework to Identify Cellwise Outliers," Stats, MDPI, vol. 7(4), pages 1-15, October.
    10. Maronna, Ricardo A. & Yohai, Victor J., 2017. "Robust and efficient estimation of multivariate scatter and location," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 64-75.
    11. Archimbaud, Aurore & Nordhausen, Klaus & Ruiz-Gazen, Anne, 2018. "ICS for multivariate outlier detection with application to quality control," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 184-199.
    12. Anahita Nodehi & Mousa Golalizadeh & Mehdi Maadooliat & Claudio Agostinelli, 2021. "Estimation of parameters in multivariate wrapped models for data on a p-torus," Computational Statistics, Springer, vol. 36(1), pages 193-215, March.
    13. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    14. Henry Velasco & Henry Laniado & Mauricio Toro & Víctor Leiva & Yuhlong Lio, 2020. "Robust Three-Step Regression Based on Comedian and Its Performance in Cell-Wise and Case-Wise Outliers," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    15. David J. Hand, 2018. "Statistical challenges of administrative and transaction data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 555-605, June.
    16. Rousseeuw, Peter & Perrotta, Domenico & Riani, Marco & Hubert, Mia, 2019. "Robust Monitoring of Time Series with Application to Fraud Detection," Econometrics and Statistics, Elsevier, vol. 9(C), pages 108-121.
    17. Md. Matiur Rahaman & Md. Nurul Haque Mollah, 2019. "Robustification of Gaussian Bayes Classifier by the Minimum β-Divergence Method," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 113-139, April.
    18. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    19. Leung, Andy & Zhang, Hongyang & Zamar, Ruben, 2016. "Robust regression estimation and inference in the presence of cellwise and casewise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 1-11.
    20. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.

    More about this item

    Keywords

    62H99;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:2:d:10.1007_s11749-019-00648-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.