IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v111y2017icp59-76.html
   My bibliography  Save this article

Multivariate location and scatter matrix estimation under cellwise and casewise contamination

Author

Listed:
  • Leung, Andy
  • Yohai, Victor
  • Zamar, Ruben

Abstract

Real data may contain both cellwise outliers and casewise outliers. There is a vast literature on robust estimation for casewise outliers, but only a scant literature for cellwise outliers and almost none for both types of outliers. Estimation of multivariate location and scatter matrix is a corner stone in multivariate data analysis. A two-step approach was recently proposed to perform robust estimation of multivariate location and scatter matrix in the presence of cellwise and casewise outliers. In the first step a univariate filter was applied to remove cellwise outliers. In the second step a generalized S-estimator was used to downweight casewise outliers. This proposal can be further improved in three main directions. First, through the introduction of a consistent bivariate filter to be used in combination with the univariate filter in the first step. Second, through the proposal of a new fast subsampling procedure to generate starting points for the generalized S-estimator in the second step. Third, through the use of a non-monotonic weight function for the generalized S-estimator to better handle casewise outliers in high dimension. A simulation study and a real data example show that, unlike the original two-step procedure, the modified two-step approach performs and scales well in high dimension. Moreover, they show that the modified procedure outperforms the original one and other state-of-the-art robust procedures under cellwise and casewise data contamination.

Suggested Citation

  • Leung, Andy & Yohai, Victor & Zamar, Ruben, 2017. "Multivariate location and scatter matrix estimation under cellwise and casewise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 59-76.
  • Handle: RePEc:eee:csdana:v:111:y:2017:i:c:p:59-76
    DOI: 10.1016/j.csda.2017.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317300270
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & J. S. Marron & Amnon Neeman, 2005. "Geometric representation of high dimension, low sample size data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 427-444, June.
    2. Mike Danilov & Víctor J. Yohai & Ruben H. Zamar, 2012. "Robust Estimation of Multivariate Location and Scatter in the Presence of Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1178-1186, September.
    3. Claudio Agostinelli & Andy Leung & Victor Yohai & Ruben Zamar, 2015. "Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 441-461, September.
    4. Claudio Agostinelli & Andy Leung & Victor Yohai & Ruben Zamar, 2015. "Rejoinder on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 484-488, September.
    5. Peter Rousseeuw & Wannes den Bossche, 2015. "Comments on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 473-477, September.
    6. Ricardo Maronna, 2015. "Comments on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 471-472, September.
    7. Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    2. Stefan Aelst & Ruben H. Zamar, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 360-362, June.
    3. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephane Heritier & Maria-Pia Victoria-Feser, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 595-602, December.
    2. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    3. Christophe Croux & Viktoria Öllerer, 2015. "Comments on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 462-466, September.
    4. Stefan Aelst & Ruben H. Zamar, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 360-362, June.
    5. Henry Velasco & Henry Laniado & Mauricio Toro & Víctor Leiva & Yuhlong Lio, 2020. "Robust Three-Step Regression Based on Comedian and Its Performance in Cell-Wise and Case-Wise Outliers," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    6. Leung, Andy & Zhang, Hongyang & Zamar, Ruben, 2016. "Robust regression estimation and inference in the presence of cellwise and casewise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 1-11.
    7. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    8. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    9. Claudio Agostinelli & Andy Leung & Victor Yohai & Ruben Zamar, 2015. "Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 441-461, September.
    10. Maronna, Ricardo A. & Yohai, Victor J., 2017. "Robust and efficient estimation of multivariate scatter and location," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 64-75.
    11. Archimbaud, Aurore & Nordhausen, Klaus & Ruiz-Gazen, Anne, 2018. "ICS for multivariate outlier detection with application to quality control," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 184-199.
    12. Anahita Nodehi & Mousa Golalizadeh & Mehdi Maadooliat & Claudio Agostinelli, 2021. "Estimation of parameters in multivariate wrapped models for data on a p-torus," Computational Statistics, Springer, vol. 36(1), pages 193-215, March.
    13. David J. Hand, 2018. "Statistical challenges of administrative and transaction data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 555-605, June.
    14. Rousseeuw, Peter & Perrotta, Domenico & Riani, Marco & Hubert, Mia, 2019. "Robust Monitoring of Time Series with Application to Fraud Detection," Econometrics and Statistics, Elsevier, vol. 9(C), pages 108-121.
    15. Md. Matiur Rahaman & Md. Nurul Haque Mollah, 2019. "Robustification of Gaussian Bayes Classifier by the Minimum β-Divergence Method," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 113-139, April.
    16. Stefan Van Aelst, 2015. "Comments on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 478-481, September.
    17. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.
    18. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    19. Jung, Sungkyu & Sen, Arusharka & Marron, J.S., 2012. "Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 190-203.
    20. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:111:y:2017:i:c:p:59-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.