IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v8y2014i1p5-26.html
   My bibliography  Save this article

Robust clustering around regression lines with high density regions

Author

Listed:
  • Andrea Cerioli
  • Domenico Perrotta

Abstract

Robust methods are needed to fit regression lines when outliers are present. In a clustering framework, outliers can be extreme observations, high leverage points, but also data points which lie among the groups. Outliers are also of paramount importance in the analysis of international trade data, which motivate our work, because they may provide information about anomalies like fraudulent transactions. In this paper we show that robust techniques can fail when a large proportion of non-contaminated observations fall in a small region, which is a likely occurrence in many international trade data sets. In such instances, the effect of a high-density region is so strong that it can override the benefits of trimming and other robust devices. We propose to solve the problem by sampling a much smaller subset of observations which preserves the cluster structure and retains the main outliers of the original data set. This goal is achieved by defining the retention probability of each point as an inverse function of the estimated density function for the whole data set. We motivate our proposal as a thinning operation on a point pattern generated by different components. We then apply robust clustering methods to the thinned data set for the purposes of classification and outlier detection. We show the advantages of our method both in empirical applications to international trade examples and through a simulation study. Copyright Springer 2014

Suggested Citation

  • Andrea Cerioli & Domenico Perrotta, 2014. "Robust clustering around regression lines with high density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 5-26, March.
  • Handle: RePEc:spr:advdac:v:8:y:2014:i:1:p:5-26
    DOI: 10.1007/s11634-013-0151-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-013-0151-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-013-0151-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.
    2. Van Aelst, Stefan & (Steven) Wang, Xiaogang & Zamar, Ruben H. & Zhu, Rong, 2006. "Linear grouping using orthogonal regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1287-1312, March.
    3. Francesca De Battisti & Silvia Salini, 2013. "Robust analysis of bibliometric data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 269-283, June.
    4. Pietro Coretto & Christian Hennig, 2010. "A simulation study to compare robust clustering methods based on mixtures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 111-135, September.
    5. Francesca DE BATTISTI & Silvia SALINI, 2011. "Robust analysis of bibliometric data," Departmental Working Papers 2011-36, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    6. L. A. García‐Escudero & A. Gordaliza & R. San Martín & S. Van Aelst & R. Zamar, 2009. "Robust linear clustering," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 301-318, January.
    7. Bai, Xiuqin & Yao, Weixin & Boyer, John E., 2012. "Robust fitting of mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2347-2359.
    8. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    9. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    10. Maurizio Vichi & Roberto Rocci & Henk A.L. Kiers, 2007. "Simultaneous Component and Clustering Models for Three-way Data: Within and Between Approaches," Journal of Classification, Springer;The Classification Society, vol. 24(1), pages 71-98, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bart Baesens & Sebastiaan Höppner & Irene Ortner & Tim Verdonck, 2021. "robROSE: A robust approach for dealing with imbalanced data in fraud detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 841-861, September.
    2. Francesca Torti & Marco Riani & Gianluca Morelli, 2021. "Semiautomatic robust regression clustering of international trade data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 863-894, September.
    3. Riani, Marco & Perrotta, Domenico & Cerioli, Andrea, 2015. "The Forward Search for Very Large Datasets," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(c01).
    4. Francesca Torti & Domenico Perrotta & Marco Riani & Andrea Cerioli, 2019. "Assessing trimming methodologies for clustering linear regression data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 227-257, March.
    5. Lucio Barabesi & Andrea Cerioli & Domenico Perrotta, 2021. "Forum on Benford’s law and statistical methods for the detection of frauds," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 767-778, September.
    6. Silvia Salini & Andrea Cerioli & Fabrizio Laurini & Marco Riani, 2016. "Reliable Robust Regression Diagnostics," International Statistical Review, International Statistical Institute, vol. 84(1), pages 99-127, April.
    7. Domenico Perrotta & Francesca Torti, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 641-649, December.
    8. Marco Riani & Andrea Cerioli & Domenico Perrotta & Francesca Torti, 2015. "Simulating mixtures of multivariate data with fixed cluster overlap in FSDA library," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 461-481, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    2. García-Escudero, L.A. & Gordaliza, A. & Mayo-Iscar, A. & San Martín, R., 2010. "Robust clusterwise linear regression through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3057-3069, December.
    3. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    4. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
    5. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    6. Luca Greco & Antonio Lucadamo & Claudio Agostinelli, 2021. "Weighted likelihood latent class linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 711-746, June.
    7. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    8. Shi, Jianhong & Chen, Kun & Song, Weixing, 2014. "Robust errors-in-variables linear regression via Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 113-120.
    9. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    10. Bai, Xiuqin & Yao, Weixin & Boyer, John E., 2012. "Robust fitting of mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2347-2359.
    11. L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2014. "A constrained robust proposal for mixture modeling avoiding spurious solutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 27-43, March.
    12. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
    13. Waleed M. Sweileh & Sa’ed H. Zyoud & Samah W. Al-Jabi & Ansam F. Sawalha, 2014. "Bibliometric analysis of diabetes mellitus research output from Middle Eastern Arab countries during the period (1996–2012)," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 819-832, October.
    14. Stefan Aelst & Ruben H. Zamar, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 360-362, June.
    15. Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
    16. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    17. Chun Yu & Weixin Yao & Guangren Yang, 2020. "A Selective Overview and Comparison of Robust Mixture Regression Estimators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 176-202, April.
    18. Song, Weixing & Yao, Weixin & Xing, Yanru, 2014. "Robust mixture regression model fitting by Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 128-137.
    19. Li, Xiongya & Bai, Xiuqin & Song, Weixing, 2017. "Robust mixture multivariate linear regression by multivariate Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 32-39.
    20. Luca Greco & Antonio Lucadamo & Pietro Amenta, 2020. "An Impartial Trimming Approach for Joint Dimension and Sample Reduction," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 769-788, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:8:y:2014:i:1:p:5-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.