IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v24y2015i3p441-461.html
   My bibliography  Save this article

Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination

Author

Listed:
  • Claudio Agostinelli
  • Andy Leung
  • Victor Yohai
  • Ruben Zamar

Abstract

Multivariate location and scatter matrix estimation is a cornerstone in multivariate data analysis. We consider this problem when the data may contain independent cellwise and casewise outliers. Flat data sets with a large number of variables and a relatively small number of cases are common place in modern statistical applications. In these cases, global down-weighting of an entire case, as performed by traditional robust procedures, may lead to poor results. We highlight the need for a new generation of robust estimators that can efficiently deal with cellwise outliers and at the same time show good performance under casewise outliers. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • Claudio Agostinelli & Andy Leung & Victor Yohai & Ruben Zamar, 2015. "Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 441-461, September.
  • Handle: RePEc:spr:testjl:v:24:y:2015:i:3:p:441-461
    DOI: 10.1007/s11749-015-0450-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-015-0450-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-015-0450-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mike Danilov & Víctor J. Yohai & Ruben H. Zamar, 2012. "Robust Estimation of Multivariate Location and Scatter in the Presence of Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1178-1186, September.
    2. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    3. Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    2. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    3. Leung, Andy & Yohai, Victor & Zamar, Ruben, 2017. "Multivariate location and scatter matrix estimation under cellwise and casewise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 59-76.
    4. Rousseeuw, Peter & Perrotta, Domenico & Riani, Marco & Hubert, Mia, 2019. "Robust Monitoring of Time Series with Application to Fraud Detection," Econometrics and Statistics, Elsevier, vol. 9(C), pages 108-121.
    5. Leung, Andy & Zhang, Hongyang & Zamar, Ruben, 2016. "Robust regression estimation and inference in the presence of cellwise and casewise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 1-11.
    6. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.
    7. Stephane Heritier & Maria-Pia Victoria-Feser, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 595-602, December.
    8. Maronna, Ricardo A. & Yohai, Victor J., 2017. "Robust and efficient estimation of multivariate scatter and location," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 64-75.
    9. Henry Velasco & Henry Laniado & Mauricio Toro & Víctor Leiva & Yuhlong Lio, 2020. "Robust Three-Step Regression Based on Comedian and Its Performance in Cell-Wise and Case-Wise Outliers," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    10. Archimbaud, Aurore & Nordhausen, Klaus & Ruiz-Gazen, Anne, 2018. "ICS for multivariate outlier detection with application to quality control," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 184-199.
    11. Christophe Croux & Viktoria Öllerer, 2015. "Comments on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 462-466, September.
    12. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    13. Md. Matiur Rahaman & Md. Nurul Haque Mollah, 2019. "Robustification of Gaussian Bayes Classifier by the Minimum β-Divergence Method," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 113-139, April.
    14. Anahita Nodehi & Mousa Golalizadeh & Mehdi Maadooliat & Claudio Agostinelli, 2021. "Estimation of parameters in multivariate wrapped models for data on a p-torus," Computational Statistics, Springer, vol. 36(1), pages 193-215, March.
    15. Stefan Aelst & Ruben H. Zamar, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 360-362, June.
    16. David J. Hand, 2018. "Statistical challenges of administrative and transaction data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 555-605, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Van Aelst, 2015. "Comments on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 478-481, September.
    2. Stephane Heritier & Maria-Pia Victoria-Feser, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 595-602, December.
    3. Leung, Andy & Yohai, Victor & Zamar, Ruben, 2017. "Multivariate location and scatter matrix estimation under cellwise and casewise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 59-76.
    4. Tarr, G. & Müller, S. & Weber, N.C., 2016. "Robust estimation of precision matrices under cellwise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 404-420.
    5. Christophe Croux & Viktoria Öllerer, 2015. "Comments on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 462-466, September.
    6. Claudio Agostinelli & Andy Leung & Victor Yohai & Ruben Zamar, 2015. "Rejoinder on: Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 484-488, September.
    7. Jakob Raymaekers & Peter J. Rousseeuw & Iwein Vranckx, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 589-594, December.
    8. Frahm, Gabriel & Nordhausen, Klaus & Oja, Hannu, 2020. "M-estimation with incomplete and dependent multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    9. repec:cte:wsrepe:24534 is not listed on IDEAS
    10. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    11. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    12. Stefan Aelst & Ruben H. Zamar, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 360-362, June.
    13. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2013. "Robust distances for outlier-free goodness-of-fit testing," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 29-45.
    14. Henry Velasco & Henry Laniado & Mauricio Toro & Víctor Leiva & Yuhlong Lio, 2020. "Robust Three-Step Regression Based on Comedian and Its Performance in Cell-Wise and Case-Wise Outliers," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    15. Leung, Andy & Zhang, Hongyang & Zamar, Ruben, 2016. "Robust regression estimation and inference in the presence of cellwise and casewise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 1-11.
    16. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:24:y:2015:i:3:p:441-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.