IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v63y2006i2p145-168.html
   My bibliography  Save this article

Change Point Analysis based on Empirical Characteristic Functions

Author

Listed:
  • Marie Hušková
  • Simos Meintanis

Abstract

No abstract is available for this item.

Suggested Citation

  • Marie Hušková & Simos Meintanis, 2006. "Change Point Analysis based on Empirical Characteristic Functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(2), pages 145-168, April.
  • Handle: RePEc:spr:metrik:v:63:y:2006:i:2:p:145-168
    DOI: 10.1007/s00184-005-0008-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-005-0008-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-005-0008-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antoch, Jaromír & Husková, Marie, 2001. "Permutation tests in change point analysis," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 37-46, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    2. Claudia Kirch, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 270-275, June.
    3. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. B. Cooper Boniece & Lajos Horv'ath & Lorenzo Trapani, 2023. "On changepoint detection in functional data using empirical energy distance," Papers 2310.04853, arXiv.org.
    5. Bin Liu & Cheng Zhou & Xinsheng Zhang & Yufeng Liu, 2020. "A unified data‐adaptive framework for high dimensional change point detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 933-963, September.
    6. Mohamed Salah Eddine Arrouch & Echarif Elharfaoui & Joseph Ngatchou-Wandji, 2023. "Change-Point Detection in the Volatility of Conditional Heteroscedastic Autoregressive Nonlinear Models," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
    7. Chen, Zhanshou & Xu, Qiongyao & Li, Huini, 2019. "Inference for multiple change points in heavy-tailed time series via rank likelihood ratio scan statistics," Economics Letters, Elsevier, vol. 179(C), pages 53-56.
    8. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Marie Hušková & Zuzana Prášková, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 265-269, June.
    10. Shi, Xuesheng & Gallagher, Colin & Lund, Robert & Killick, Rebecca, 2022. "A comparison of single and multiple changepoint techniques for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    11. Marie Hušková & Simos Meintanis, 2008. "Tests for the multivariate -sample problem based on the empirical characteristic function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 263-277.
    12. Meintanis, Simos G. & Ushakov, Nikolai G., 2016. "Nonparametric probability weighted empirical characteristic function and applications," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 52-61.
    13. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirch Claudia, 2007. "Resampling in the frequency domain of time series to determine critical values for change-point tests," Statistics & Risk Modeling, De Gruyter, vol. 25(3), pages 237-261, July.
    2. Barbora Peštová & Michal Pešta, 2018. "Abrupt change in mean using block bootstrap and avoiding variance estimation," Computational Statistics, Springer, vol. 33(1), pages 413-441, March.
    3. Marie Hušková & Claudia Kirch, 2012. "Bootstrapping sequential change-point tests for linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 673-708, July.
    4. Federico A. Bugni & Jia Li & Qiyuan Li, 2023. "Permutation‐based tests for discontinuities in event studies," Quantitative Economics, Econometric Society, vol. 14(1), pages 37-70, January.
    5. Cho, Haeran & Kirch, Claudia, 2022. "Bootstrap confidence intervals for multiple change points based on moving sum procedures," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    6. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    7. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    8. Marie Hušková & Claudia Kirch, 2008. "Bootstrapping confidence intervals for the change‐point of time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 947-972, November.
    9. Mohamed Salah Eddine Arrouch & Echarif Elharfaoui & Joseph Ngatchou-Wandji, 2023. "Change-Point Detection in the Volatility of Conditional Heteroscedastic Autoregressive Nonlinear Models," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
    10. Holmes, Mark & Kojadinovic, Ivan & Quessy, Jean-François, 2013. "Nonparametric tests for change-point detection à la Gombay and Horváth," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 16-32.
    11. Tabacu, Lucia & Ledbetter, Mark, 2019. "Change-point analysis using logarithmic quantile estimation," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 94-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:63:y:2006:i:2:p:145-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.