IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-34625-8_5.html
   My bibliography  Save this book chapter

Adaptive Detection of Multiple Change-Points in Asset Price Volatility

In: Long Memory in Economics

Author

Listed:
  • Marc Lavielle

    (Université René Descartes and Université Paris-Sud)

  • Gilles Teyssière

    (Université Paris 1)

Abstract

Summary This chapter considers the multiple change-point problem for time series, including strongly dependent processes, with an unknown number of change-points. We propose an adaptive method for finding the segmentation, i.e., the sequence of change-points τ with the optimal level of resolution. This optimal segmentation $$ \hat \tau $$ is obtained by minimizing a penalized contrast function J(τ, y)+ßpen(τ). For a given contrast function J(τ, y) and a given penalty function pen(τ), the adaptive procedure for automatically choosing the penalization parameter β is such that the segmentation $$ \hat \tau $$ does not strongly depend on β. This algorithm is applied to the problem of detection of change-points in the volatility of financial time series, and compared with Vostrikova’s (1981) binary segmentation procedure.

Suggested Citation

  • Marc Lavielle & Gilles Teyssière, 2007. "Adaptive Detection of Multiple Change-Points in Asset Price Volatility," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 129-156, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-34625-8_5
    DOI: 10.1007/978-3-540-34625-8_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sensoy, Ahmet & Sobaci, Cihat, 2014. "Effects of volatility shocks on the dynamic linkages between exchange rate, interest rate and the stock market: The case of Turkey," Economic Modelling, Elsevier, vol. 43(C), pages 448-457.
    2. Turhan, M. Ibrahim & Sensoy, Ahmet & Ozturk, Kevser & Hacihasanoglu, Erk, 2014. "A view to the long-run dynamic relationship between crude oil and the major asset classes," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 286-299.
    3. Sensoy, Ahmet & Soytas, Ugur & Yildirim, Irem & Hacihasanoglu, Erk, 2014. "Dynamic relationship between Turkey and European countries during the global financial crisis," Economic Modelling, Elsevier, vol. 40(C), pages 290-298.
    4. Tang, Yusui & Ma, Feng, 2023. "The volatility of natural resources implications for sustainable development: Crude oil volatility prediction based on the multivariate structural regime switching," Resources Policy, Elsevier, vol. 83(C).
    5. Turhan, M. Ibrahim & Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "A comparative analysis of the dynamic relationship between oil prices and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 32(C), pages 397-414.
    6. Marie Hušková & Zuzana Prášková, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 265-269, June.
    7. Kyungwon Kim & Jae Wook Song, 2018. "Managing Bubbles in the Korean Real Estate Market: A Real Options Framework," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    8. Sensoy, Ahmet, 2013. "Dynamic relationship between precious metals," Resources Policy, Elsevier, vol. 38(4), pages 504-511.
    9. Kyungwon Kim & Jae Wook Song, 2020. "Detecting Possible Reduction of the Housing Bubble in Korea for Different Residential Types and Regions," Sustainability, MDPI, vol. 12(3), pages 1-31, February.
    10. Mengchen Wang & Trevor Harris & Bo Li, 2023. "Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 157-176, March.
    11. Shu, Lei & Chen, Yu & Zhang, Weiping & Wang, Xueqin, 2022. "Spatial rank-based high-dimensional change point detection via random integration," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
    13. Qian, Lihua & Zeng, Qing & Li, Tao, 2022. "Geopolitical risk and oil price volatility: Evidence from Markov-switching model," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 29-38.
    14. Charakopoulos, Avraam & Karakasidis, Theodoros, 2022. "Backward Degree a new index for online and offline change point detection based on complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    15. Nick James & Max Menzies, 2021. "Collective correlations, dynamics, and behavioural inconsistencies of the cryptocurrency market over time," Papers 2107.13926, arXiv.org, revised Dec 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-34625-8_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.