IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200818.html
   My bibliography  Save this paper

Testing for image symmetries: with application to confocal microscopy

Author

Listed:
  • Bissantz, Nicolai
  • Holzmann, Hajo
  • Pawlak, Mirosław

Abstract

Statistical tests are introduced for checking whether an image function f(x, y) defined on the unit disc D = {(x, y) : x2 + y2 . 1} is invariant under certain symmetry transformations of D, given that discrete and noisy data are observed. We consider invariance under reflections or under rotations by rational angles, as well as joint invariance under both reflections and rotations. Furthermore, we propose a test for rotational invariance of f(x, y), i.e., for checking whether f(x, y), after transformation to polar coordinates, only depends on the radius and not on the angle. These symmetry relations can be naturally expressed as restrictions for the Zernike moments of the image function f(x, y), i.e., the Fourier coefficients with respect to the Zernike orthogonal basis. Therefore, our test statistics are based on checking whether the estimated Zernike coefficients approximately satisfy those restrictions. This is carried out by forming the L2 distance between the image function and its transformed version obtained by some symmetry transformation. We derive the asymptotic distribution of the test statistics under both the hypothesis of symmetry as well as under fixed alternatives. Furthermore, we investigate the quality of the asymptotic approximations via simulation studies. The usefulness our theory is verified by examining an important problem in confocal microscopy, i.e., we investigate possible imprecise alignments in the optical path of the microscope. For optical systems with rotational symmetry, the theoretical point-spread-function (PSF) is reflection symmetric with respect to two orthogonal axes, and rotationally invariant if the detector plane matches the optical plane of the microscope. We use our tests to investigate whether the required symmetries can indeed be detected in the empirical PSF.

Suggested Citation

  • Bissantz, Nicolai & Holzmann, Hajo & Pawlak, Mirosław, 2008. "Testing for image symmetries: with application to confocal microscopy," Technical Reports 2008,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200818
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/36592/1/600371743.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    2. Enno Mammen, "undated". "Comparing nonparametric versus parametric regression fits," Statistic und Oekonometrie 9205, Humboldt Universitaet Berlin.
    3. Axel Munk & Nicolai Bissantz & Thorsten Wagner & Gudrun Freitag, 2005. "On difference‐based variance estimation in nonparametric regression when the covariate is high dimensional," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 19-41, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eckhard Liebscher, 2012. "Model checks for parametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 132-155, March.
    2. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    3. Anatolyev Stanislav, 2019. "Testing for a Functional Form of Mean Regression in a Fully Parametric Environment," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-20, January.
    4. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    5. Denis Chetverikov, 2012. "Testing regression monotonicity in econometric models," CeMMAP working papers CWP35/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2022. "Optimal minimax rates against nonsmooth alternatives [Optimal testing for additivity in multiple nonparametric regression]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 322-339.
    7. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Lopez, O. & Patilea, V., 2009. "Nonparametric lack-of-fit tests for parametric mean-regression models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 210-230, January.
    9. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2018. "Rate Optimal Specification Test When the Number of Instruments is Large," KIER Working Papers 986, Kyoto University, Institute of Economic Research.
    10. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    11. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    12. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    13. Christoph Breunig, 2019. "Goodness-of-Fit Tests based on Series Estimators in Nonparametric Instrumental Regression," Papers 1909.10133, arXiv.org.
    14. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    15. Olivier Collier & Arnak S, Dalalyan, 2013. "Curve registration by Nonparametric goodness-of-fit Testing," Working Papers 2013-33, Center for Research in Economics and Statistics.
    16. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP14/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Long Feng & Changliang Zou & Zhaojun Wang & Lixing Zhu, 2015. "Robust comparison of regression curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 185-204, March.
    18. Bissantz, Nicolai & Holzmann, Hajo, 2007. "Statistical inference for inverse problems," Technical Reports 2007,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    20. Chen, Song Xi & Gao, Jiti & Tang, Chenghong, 2005. "A test for model specification of diffusion processes," MPRA Paper 11976, University Library of Munich, Germany, revised Feb 2007.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.