IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v84y2023i2d10.1007_s11235-023-01040-2.html
   My bibliography  Save this article

Data dissemination protocol for VANETs to optimize the routing path using hybrid particle swarm optimization with sequential variable neighbourhood search

Author

Listed:
  • S. Harihara Gopalan

    (Sri Ramakrishna Engineering College)

  • J. Ashok

    (V. S. B. Engineering College)

  • A. Manikandan

    (SSM Institute of Engineering and Technology)

  • S. Ramalingam

    (Sri Eshwar College of Engineering)

Abstract

A vehicular Ad-Hoc Network (VANET) is a form of Mobile Ad-Hoc Network (MANET) which employs wireless routers that are inside every vehicle to operate as a node. The process of data dissemination is used to improve the quality of travel to avoid unnecessary accidents in VANET. Many legacy protocols use this type of messaging activity to ensure fair road safety without concern for network congestion. Node congestion increases with control of routing overhead packets. Therefore, this paper proposes a Data Dissemination Protocol (DDP). VANET routing protocols can be divided into two categories: topology-based routing protocols and location-based routing protocols. The goal is to relay emergency signals to stationary nodes as soon as possible. The standard messages will be routed to the FIFO queue. Multiple routes were found using the Time delay-based Multipath Routing (TMR) approach to transmit these messages to a destination node, and Particle Swarm Optimisation (PSO) is utilized to find the optimal and secure path. Sequential Variable Neighborhood Search (SVNS) algorithm is applied in order to optimize the particles’ position with Local Best particle and Global Best particle (LBGB). The proposed method PSO-SVNS-LBGB is compared with different methods such as PSO-SVNS-GB, PSO-SVNS-LB, PSO-SVNS-CLB, PSO-SVNS-CGB. The experimental results show significant improvements in throughput and packet loss ratio, reduced end-to-end delay, rounding overhead ratio, and energy consumption. The simulation environment was conducted in NS2.34 is preferred for network simulation, and the VANET simulator used is SUMO and MOVE software. With a 98.41 ms delay and an average speed of 60 km/h, the PSO-SVNS-LBGB approach is suggested.

Suggested Citation

  • S. Harihara Gopalan & J. Ashok & A. Manikandan & S. Ramalingam, 2023. "Data dissemination protocol for VANETs to optimize the routing path using hybrid particle swarm optimization with sequential variable neighbourhood search," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 84(2), pages 153-165, October.
  • Handle: RePEc:spr:telsys:v:84:y:2023:i:2:d:10.1007_s11235-023-01040-2
    DOI: 10.1007/s11235-023-01040-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-023-01040-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-023-01040-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vignesh Prasanna Natarajan & Kavitha Thandapani, 2022. "An improvement of communication stability on underwater sensor network using balanced energy efficient joining distance matrix," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 690-698, March.
    2. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Festa & Panos Pardalos, 2012. "Efficient solutions for the far from most string problem," Annals of Operations Research, Springer, vol. 196(1), pages 663-682, July.
    2. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    3. Qingzheng Xu & Na Wang & Lei Wang & Wei Li & Qian Sun, 2021. "Multi-Task Optimization and Multi-Task Evolutionary Computation in the Past Five Years: A Brief Review," Mathematics, MDPI, vol. 9(8), pages 1-44, April.
    4. Xiao, Lei & Zhang, Xinghui & Tang, Junxuan & Zhou, Yaqin, 2020. "Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    6. Jun Pei & Bayi Cheng & Xinbao Liu & Panos M. Pardalos & Min Kong, 2019. "Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time," Annals of Operations Research, Springer, vol. 272(1), pages 217-241, January.
    7. Christos Koulamas, 1997. "Decomposition and hybrid simulated annealing heuristics for the parallel‐machine total tardiness problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 109-125, February.
    8. F. Stefanello & L. S. Buriol & M. J. Hirsch & P. M. Pardalos & T. Querido & M. G. C. Resende & M. Ritt, 2017. "On the minimization of traffic congestion in road networks with tolls," Annals of Operations Research, Springer, vol. 249(1), pages 119-139, February.
    9. Drexl, Andreas & Salewski, Frank, 1996. "Distribution Requirements and Compactness Constraints in School Timetabling. Part II: Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 384, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    11. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    12. Yamachi, Hidemi & Tsujimura, Yasuhiro & Kambayashi, Yasushi & Yamamoto, Hisashi, 2006. "Multi-objective genetic algorithm for solving N-version program design problem," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1083-1094.
    13. A H Kashan & B Karimi, 2008. "Scheduling a single batch-processing machine with arbitrary job sizes and incompatible job families: An ant colony framework," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1269-1280, September.
    14. Thi-Kien Dao & Tien-Szu Pan & Trong-The Nguyen & Jeng-Shyang Pan, 2018. "Parallel bat algorithm for optimizing makespan in job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 451-462, February.
    15. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    16. L. A. C. Roque & D. B. M. M. Fontes & F. A. C. C. Fontes, 2014. "A hybrid biased random key genetic algorithm approach for the unit commitment problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 140-166, July.
    17. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.
    18. Wang, Haibo & Alidaee, Bahram, 2019. "The multi-floor cross-dock door assignment problem: Rising challenges for the new trend in logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 30-47.
    19. Zamani, Shokufeh & Arkat, Jamal & Niaki, Seyed Taghi Akhavan, 2022. "Service interruption and customer withdrawal in the congested facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    20. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:84:y:2023:i:2:d:10.1007_s11235-023-01040-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.