IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v73y2020i3d10.1007_s11235-019-00617-0.html
   My bibliography  Save this article

Cache agent based location aided routing using distance and direction for performance enhancement in VANET

Author

Listed:
  • E. Gurumoorthi

    (Annamalai University)

  • A. Ayyasamy

    (Annamalai University)

Abstract

Vehicular ad hoc networks are a vibrant technology for future intelligent transport system. Vehicular ad hoc networks are a sub-level of wireless sensor network which establishes vehicle connectivity through wireless medium. Once the vehicles communicated with each other, vehicle mobility with a dynamic network environment faces new challenges. The intelligent transport system continues to evolve high packet delivery rate which is required to enhance the security application thus reduces the packet latency. This paper proposes a hybrid routing protocol called cache agent based location aided routing using distance and direction (CALAR-DD). The proposed protocol is a fusion of geocasting and position-based routing with distance and direction. The CALAR-DD operates in two steps. First, it chooses the next hop vehicle to forward the packet until it reaches the expected region. The expected zone becomes geocast region at the second step. Within this region, cache agent-based geocasting is used to find and forward the packets to the destination. The simulated outcome explores the improved performance of the proposed protocol over ID-LAR, M-GEDIR and FL-DGR in terms of packet delivery ratio, average delay, hop count and retransmission ratio.

Suggested Citation

  • E. Gurumoorthi & A. Ayyasamy, 2020. "Cache agent based location aided routing using distance and direction for performance enhancement in VANET," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(3), pages 419-432, March.
  • Handle: RePEc:spr:telsys:v:73:y:2020:i:3:d:10.1007_s11235-019-00617-0
    DOI: 10.1007/s11235-019-00617-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-019-00617-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-019-00617-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqi Liu & Jiafu Wan & Qinruo Wang & Pan Deng & Keliang Zhou & Yupeng Qiao, 2016. "A survey on position-based routing for vehicular ad hoc networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(1), pages 15-30, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatima Belamri & Samra Boulfekhar & Djamil Aissani, 2021. "A survey on QoS routing protocols in Vehicular Ad Hoc Network (VANET)," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(1), pages 117-153, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martine Wahl & Patrick Sondi & Lucas Rivoirard, 2021. "Enhanced CBL clustering performance versus GRP, OLSR and AODV in vehicular Ad Hoc networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(4), pages 525-540, April.
    2. Abir Mchergui & Tarek Moulahi & Bechir Alaya & Salem Nasri, 2017. "A survey and comparative study of QoS aware broadcasting techniques in VANET," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 66(2), pages 253-281, October.
    3. Irshad Ahmed Abbasi & Adnan Shahid Khan, 2018. "A Review of Vehicle to Vehicle Communication Protocols for VANETs in the Urban Environment," Future Internet, MDPI, vol. 10(2), pages 1-15, January.
    4. Hu, Beibei & Zhang, Shuang & Ding, Yang & Zhang, Min & Dong, Xianlei & Sun, Huijun, 2021. "Research on the coupling degree of regional taxi demand and social development from the perspective of job–housing travels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    5. Beibei Hu & Yawen Kong & Mengge Sun & Xianlei Dong & Gang Zong, 2018. "Understanding the unbalance of interest in taxi market based on drivers' service profit margins," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:73:y:2020:i:3:d:10.1007_s11235-019-00617-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.