IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v62y2016i2d10.1007_s11235-015-0083-9.html
   My bibliography  Save this article

Lexicographical minimization of routing hops in hop-constrained node survivable networks

Author

Listed:
  • Luis Gouveia

    (Centro de Matemática, Aplicações Fundamentais e Investigação Operacional
    Faculdade de Ciências da Universidade de Lisboa)

  • Pedro Patrício

    (Centro de Matemática, Aplicações Fundamentais e Investigação Operacional
    Rua Marquês d’Ávila e Bolama)

  • Amaro Sousa

    (Instituto de Telecomunicações
    Universidade de Aveiro Campus Universitário de Santiago)

Abstract

In this paper, we address a hop-constrained node survivable traffic engineering problem in the context of packet switched networks with source based routing. Consider a telecommunications network with given link capacities that was dimensioned for a set of commodities, with estimated demand values, such that each commodity demand is routed through a set of node disjoint service and backup paths, all with at most H hops. When the network is put in operation, the real demand values might be different from the initial estimated ones. So, we aim to determine a set of hop-constrained service and backup paths for each commodity, with known demand values, such that the whole set of paths does not violate the link capacities. The traffic engineering goal is related with the hop minimization of only the service paths. We aim to minimize the number of routing hops in a lexicographical sense, i.e., minimize the number of service paths with the worst number of hops; then, among all such solutions, minimize the number of service paths with the second worst number of hops; and so on. We address two traffic engineering variants: in the first variant, all service paths of each commodity are accounted for in the objective function while in the second variant only the worst service path of each commodity is accounted for in the objective function. We first present and discuss three classes of Integer Linear Programming hop-indexed models—disaggregated, mixed and aggregated—for both variants. Then, we prove that, although the three classes are not equivalent, they provide the same Linear Programming relaxation bounds for each variant. Finally, we present computational results showing that, as a consequence, the more compact aggregated models are more efficient in obtaining the optimal integer solutions.

Suggested Citation

  • Luis Gouveia & Pedro Patrício & Amaro Sousa, 2016. "Lexicographical minimization of routing hops in hop-constrained node survivable networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(2), pages 417-434, June.
  • Handle: RePEc:spr:telsys:v:62:y:2016:i:2:d:10.1007_s11235-015-0083-9
    DOI: 10.1007/s11235-015-0083-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-015-0083-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-015-0083-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Gouveia, 1998. "Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning and Steiner Trees with Hop Constraints," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 180-188, May.
    2. Luís Gouveia & Pedro Patrício & Amaro Sousa, 2008. "Hop-Constrained Node Survivable Network Design: An Application to MPLS over WDM," Networks and Spatial Economics, Springer, vol. 8(1), pages 3-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gouveia, Luis & Leitner, Markus, 2017. "Design of survivable networks with vulnerability constraints," European Journal of Operational Research, Elsevier, vol. 258(1), pages 89-103.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quentin Botton & Bernard Fortz & Luis Gouveia & Michael Poss, 2013. "Benders Decomposition for the Hop-Constrained Survivable Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 13-26, February.
    2. BOTTON, Quentin & FORTZ, Bernard & GOUVEIA, Luis & POSS, Michael, 2011. "Benders decomposition for the hop-constrained survivable network design problem," LIDAM Discussion Papers CORE 2011037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Sara Mattia, 2012. "Solving survivable two-layer network design problems by metric inequalities," Computational Optimization and Applications, Springer, vol. 51(2), pages 809-834, March.
    4. Okan Arslan & Ola Jabali & Gilbert Laporte, 2020. "A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 120-134, January.
    5. Sara Mattia, 2010. "Solving Survivable Two-Layer Network Design Problems by Metric Inequalities," DIS Technical Reports 2010-02, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    6. Luis Gouveia & Thomas Magnanti & Cristina Requejo, 2006. "An intersecting tree model for odd-diameter-constrained minimum spanning and Steiner trees," Annals of Operations Research, Springer, vol. 146(1), pages 19-39, September.
    7. Hyun Kim, 2012. "P-hub protection models for survivable hub network design," Journal of Geographical Systems, Springer, vol. 14(4), pages 437-461, October.
    8. Costa, Alysson M. & Cordeau, Jean-François & Laporte, Gilbert, 2008. "Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints," European Journal of Operational Research, Elsevier, vol. 190(1), pages 68-78, October.
    9. Gouveia, Luís & Paias, Ana & Ponte, Mafalda, 2023. "The travelling salesman problem with positional consistency constraints: An application to healthcare services," European Journal of Operational Research, Elsevier, vol. 308(3), pages 960-989.
    10. Pirkul, Hasan & Soni, Samit, 2003. "New formulations and solution procedures for the hop constrained network design problem," European Journal of Operational Research, Elsevier, vol. 148(1), pages 126-140, July.
    11. Alexander Veremyev & Vladimir Boginski & Eduardo Pasiliao, 2015. "Analytical characterizations of some classes of optimal strongly attack-tolerant networks and their Laplacian spectra," Journal of Global Optimization, Springer, vol. 61(1), pages 109-138, January.
    12. Gouveia, Luis & Requejo, Cristina, 2001. "A new Lagrangean relaxation approach for the hop-constrained minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 132(3), pages 539-552, August.
    13. Akgün, Ibrahim & Tansel, Barbaros Ç., 2011. "New formulations of the Hop-Constrained Minimum Spanning Tree problem via Miller-Tucker-Zemlin constraints," European Journal of Operational Research, Elsevier, vol. 212(2), pages 263-276, July.
    14. Naga V. C. Gudapati & Enrico Malaguti & Michele Monaci, 2022. "Network Design with Service Requirements: Scaling-up the Size of Solvable Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2571-2582, September.
    15. Ivana Ljubić & Stefan Gollowitzer, 2013. "Layered Graph Approaches to the Hop Constrained Connected Facility Location Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 256-270, May.
    16. De Boeck, Jérôme & Fortz, Bernard, 2018. "Extended formulation for hop constrained distribution network configuration problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 488-502.
    17. Selvaprabu Nadarajah & Andre A. Cire, 2020. "Network-Based Approximate Linear Programming for Discrete Optimization," Operations Research, INFORMS, vol. 68(6), pages 1767-1786, November.
    18. Scheibe, Kevin P. & Ragsdale, Cliff T., 2009. "A model for the capacitated, hop-constrained, per-packet wireless mesh network design problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 773-784, September.
    19. Gouveia, Luis & Leitner, Markus, 2017. "Design of survivable networks with vulnerability constraints," European Journal of Operational Research, Elsevier, vol. 258(1), pages 89-103.
    20. Iago A. Carvalho & Amadeu A. Coco, 2023. "On solving bi-objective constrained minimum spanning tree problems," Journal of Global Optimization, Springer, vol. 87(1), pages 301-323, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:62:y:2016:i:2:d:10.1007_s11235-015-0083-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.