IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v265y2018i2p488-502.html
   My bibliography  Save this article

Extended formulation for hop constrained distribution network configuration problems

Author

Listed:
  • De Boeck, Jérôme
  • Fortz, Bernard

Abstract

A distribution network is a system aiming to transfer a certain type of resource from feeders to customers. Feeders are producers of a resource and customers have a certain demand in this resource that must be satisfied. Distribution networks can be represented on graphs and be subject to constraints that limit the number of intermediate nodes between some elements of the network (hop constraints) because of physical constraints. This paper uses layered graphs for hop constrained problems to build extended formulations. Preprocessing techniques are also presented to reduce the size of the layered graphs used.

Suggested Citation

  • De Boeck, Jérôme & Fortz, Bernard, 2018. "Extended formulation for hop constrained distribution network configuration problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 488-502.
  • Handle: RePEc:eee:ejores:v:265:y:2018:i:2:p:488-502
    DOI: 10.1016/j.ejor.2017.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717307488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabral, Edgar Alberto & Erkut, Erhan & Laporte, Gilbert & Patterson, Raymond A., 2007. "The network design problem with relays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 834-844, July.
    2. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    3. Luis Gouveia, 1998. "Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning and Steiner Trees with Hop Constraints," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 180-188, May.
    4. Pirkul, Hasan & Soni, Samit, 2003. "New formulations and solution procedures for the hop constrained network design problem," European Journal of Operational Research, Elsevier, vol. 148(1), pages 126-140, July.
    5. Quentin Botton & Bernard Fortz & Luis Gouveia & Michael Poss, 2013. "Benders Decomposition for the Hop-Constrained Survivable Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 13-26, February.
    6. Anantaram Balakrishnan & Kemal Altinkemer, 1992. "Using a Hop-Constrained Model to Generate Alternative Communication Network Design," INFORMS Journal on Computing, INFORMS, vol. 4(2), pages 192-205, May.
    7. Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), 2015. "Location Science," Springer Books, Springer, edition 127, number 978-3-319-13111-5, January.
    8. Gouveia, Luis & Leitner, Markus & Ljubić, Ivana, 2014. "Hop constrained Steiner trees with multiple root nodes," European Journal of Operational Research, Elsevier, vol. 236(1), pages 100-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leitner, Markus & Ljubić, Ivana & Riedler, Martin & Ruthmair, Mario, 2020. "Exact approaches for the directed network design problem with relays," Omega, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akgün, Ibrahim & Tansel, Barbaros Ç., 2011. "New formulations of the Hop-Constrained Minimum Spanning Tree problem via Miller-Tucker-Zemlin constraints," European Journal of Operational Research, Elsevier, vol. 212(2), pages 263-276, July.
    2. Konak, Abdullah, 2012. "Network design problem with relays: A genetic algorithm with a path-based crossover and a set covering formulation," European Journal of Operational Research, Elsevier, vol. 218(3), pages 829-837.
    3. Leitner, Markus & Ljubić, Ivana & Riedler, Martin & Ruthmair, Mario, 2020. "Exact approaches for the directed network design problem with relays," Omega, Elsevier, vol. 91(C).
    4. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    5. Okan Arslan & Ola Jabali & Gilbert Laporte, 2020. "A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 120-134, January.
    6. Gouveia, Luis & Leitner, Markus & Ruthmair, Mario, 2017. "Extended formulations and branch-and-cut algorithms for the Black-and-White Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 908-928.
    7. Naga V. C. Gudapati & Enrico Malaguti & Michele Monaci, 2022. "Network Design with Service Requirements: Scaling-up the Size of Solvable Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2571-2582, September.
    8. Quentin Botton & Bernard Fortz & Luis Gouveia & Michael Poss, 2013. "Benders Decomposition for the Hop-Constrained Survivable Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 13-26, February.
    9. Scheibe, Kevin P. & Ragsdale, Cliff T., 2009. "A model for the capacitated, hop-constrained, per-packet wireless mesh network design problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 773-784, September.
    10. Costa, Alysson M. & Cordeau, Jean-François & Laporte, Gilbert, 2008. "Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints," European Journal of Operational Research, Elsevier, vol. 190(1), pages 68-78, October.
    11. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    12. BOTTON, Quentin & FORTZ, Bernard & GOUVEIA, Luis & POSS, Michael, 2011. "Benders decomposition for the hop-constrained survivable network design problem," LIDAM Discussion Papers CORE 2011037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Gouveia, Luis & Leitner, Markus, 2017. "Design of survivable networks with vulnerability constraints," European Journal of Operational Research, Elsevier, vol. 258(1), pages 89-103.
    14. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    15. Halit Üster & Panitan Kewcharoenwong, 2011. "Strategic Design and Analysis of a Relay Network in Truckload Transportation," Transportation Science, INFORMS, vol. 45(4), pages 505-523, November.
    16. Ivan Contreras & Moayad Tanash & Navneet Vidyarthi, 2017. "Exact and heuristic approaches for the cycle hub location problem," Annals of Operations Research, Springer, vol. 258(2), pages 655-677, November.
    17. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    18. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    19. Grigory Pastukhov & Alexander Veremyev & Vladimir Boginski & Eduardo L. Pasiliao, 2014. "Optimal design and augmentation of strongly attack-tolerant two-hop clusters in directed networks," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 462-486, April.
    20. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:265:y:2018:i:2:p:488-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.