IDEAS home Printed from https://ideas.repec.org/a/spr/sumafo/v29y2021i2d10.1007_s00550-021-00516-6.html
   My bibliography  Save this article

A holistic approach to model electricity loads in cities
[Ein ganzheitlicher Ansatz zur Modellierung des Stromverbrauchs in Städten]

Author

Listed:
  • S. Köhler

    (Hochschule für Technik Stuttgart)

  • M. Betz

    (Hochschule für Technik Stuttgart)

  • E. Duminil

    (Hochschule für Technik Stuttgart)

  • U. Eicker

    (Concordia University)

  • B. Schröter

    (Hochschule für Technik Stuttgart)

Abstract

Time-resolved, occupancy-dependent electricity load profiles at building level for city quarters or entire cities are important for planning authorities, project developers, utilities or other stakeholders in order to develop energy saving strategies and meet climate targets. Firstly, this information enables a more accurate modelling of renewable energy systems. Secondly, aspects like sector coupling, storage decisions and the impact of technologies such as electric vehicles or heat pumps on the grid can be considered. Thirdly, it allows a more detailed economic analysis. This paper contains the newly added features to the simulation environment SimStadt, which is used for strategic modelling of sustainable urban or regional areas with a spatial resolution at the building level. SimStadt interlinks 3D CityGML models with parameters for buildings physics to simulate energy demands and renewable energy potential. It was enhanced by the development of an electricity load profile generator with variable resolution and the addition of an hourly resolved PV potential analysis including a variable economic analysis. This enables e.g. the evaluation of photovoltaic potential with the associated investment, operating and levelized costs over the lifetime of hundreds of individual buildings in parallel. Together with additional electric building demand from heat pumps, electric vehicles or load shifting options through the use of battery storage, it will be possible to assess and compare the feasibility, benefits and economic viability of energy/electricity-related urban renewal measures in even greater detail and with a holistic perspective. The simulation platform enables the development of granular sustainable urban (sub)strategies and energy concepts through a holistic, time-resolved, building-specific approach to support transformation of the building stock to a sustainable, low-carbon one.

Suggested Citation

  • S. Köhler & M. Betz & E. Duminil & U. Eicker & B. Schröter, 2021. "A holistic approach to model electricity loads in cities [Ein ganzheitlicher Ansatz zur Modellierung des Stromverbrauchs in Städten]," Sustainability Nexus Forum, Springer, vol. 29(2), pages 143-152, June.
  • Handle: RePEc:spr:sumafo:v:29:y:2021:i:2:d:10.1007_s00550-021-00516-6
    DOI: 10.1007/s00550-021-00516-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00550-021-00516-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00550-021-00516-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    2. Verena Weiler & Jonas Stave & Ursula Eicker, 2019. "Renewable Energy Generation Scenarios Using 3D Urban Modeling Tools—Methodology for Heat Pump and Co-Generation Systems with Case Study Application †," Energies, MDPI, vol. 12(3), pages 1-19, January.
    3. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    4. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2019. "Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiler, Verena & Lust, Daniel & Brennenstuhl, Marcus & Brassel, Kai-Holger & Duminil, Eric & Eicker, Ursula, 2022. "Automatic dimensioning of energy system components for building cluster simulation," Applied Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verena Weiler & Jonas Stave & Ursula Eicker, 2019. "Renewable Energy Generation Scenarios Using 3D Urban Modeling Tools—Methodology for Heat Pump and Co-Generation Systems with Case Study Application †," Energies, MDPI, vol. 12(3), pages 1-19, January.
    2. Horak, Daniel & Hainoun, Ali & Neugebauer, Georg & Stoeglehner, Gernot, 2022. "A review of spatio-temporal urban energy system modeling for urban decarbonization strategy formulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    4. Verena Weiler & Ursula Eicker, 2021. "Automatic energy demand and system simulation at district level," Sustainability Nexus Forum, Springer, vol. 29(2), pages 133-141, June.
    5. Ghaemi, Zahra & Tran, Thomas T.D. & Smith, Amanda D., 2022. "Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties," Applied Energy, Elsevier, vol. 321(C).
    6. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    7. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    8. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    9. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    10. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    11. Jasiewicz Jarosław & Cierniewski Jerzy, 2021. "SALBEC – A Python Library and GUI Application to Calculate the Diurnal Variation of the Soil Albedo," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 95-107, September.
    12. Axel Bruck & Luca Casamassima & Ardak Akhatova & Lukas Kranzl & Kostas Galanakis, 2022. "Creating Comparability among European Neighbourhoods to Enable the Transition of District Energy Infrastructures towards Positive Energy Districts," Energies, MDPI, vol. 15(13), pages 1-21, June.
    13. Aghamolaei, Reihaneh & Shamsi, Mohammad Haris & O’Donnell, James, 2020. "Feasibility analysis of community-based PV systems for residential districts: A comparison of on-site centralized and distributed PV installations," Renewable Energy, Elsevier, vol. 157(C), pages 793-808.
    14. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    15. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    16. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2018. "Optimal bidding strategy for an energy hub in energy market," Energy, Elsevier, vol. 148(C), pages 482-493.
    17. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    18. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    19. Pillot, Benjamin & Al-Kurdi, Nadeem & Gervet, Carmen & Linguet, Laurent, 2021. "Optimizing operational costs and PV production at utility scale: An optical fiber network analogy for solar park clustering," Applied Energy, Elsevier, vol. 298(C).
    20. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sumafo:v:29:y:2021:i:2:d:10.1007_s00550-021-00516-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.