IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i2d10.1007_s00362-025-01659-0.html
   My bibliography  Save this article

Bayesian empirical likelihood inference and order shrinkage for a hysteretic autoregressive model

Author

Listed:
  • Wenshan Wang

    (Changchun University of technology)

  • Xinyuan Song

    (Changchun University of technology)

  • Guichen Han

    (Changchun University of technology)

  • Kai Yang

    (Changchun University of technology)

Abstract

In this article, we consider Bayesian empirical likelihood (BEL) inference for a class of hysteretic autoregressive models. The primary focus of this study is to develop a BEL method that integrates Bayesian inference and the empirical likelihood method for estimating the hysteretic autoregressive (HAR) model. Additionally, the order determination problem of the HAR model is discussed under the prior assumption of spike-and-slab. We conduct simulation studies to illustrate the advantages of the proposed BEL method and apply it to analyzing the U.S. Industrial Production Index data set.

Suggested Citation

  • Wenshan Wang & Xinyuan Song & Guichen Han & Kai Yang, 2025. "Bayesian empirical likelihood inference and order shrinkage for a hysteretic autoregressive model," Statistical Papers, Springer, vol. 66(2), pages 1-26, February.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:2:d:10.1007_s00362-025-01659-0
    DOI: 10.1007/s00362-025-01659-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-025-01659-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-025-01659-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    2. Han Li & Haoyu Wang & Kai Yang & Jie Sun & Yan Liu, 2023. "A nonparametric Bayesian analysis for meningococcal disease counts based on integer-valued threshold time series models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(22), pages 8223-8240, November.
    3. Barnes, Michelle L., 1999. "Inflation and returns revisited: a TAR approach," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 233-245, November.
    4. Ke Zhu & Wai Keung Li & Philip L. H. Yu, 2017. "Buffered Autoregressive Models With Conditional Heteroscedasticity: An Application to Exchange Rates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 528-542, October.
    5. Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
    6. Guodong Li & Bo Guan & Wai Keung Li & Philip L. H. Yu, 2015. "Hysteretic autoregressive time series models," Biometrika, Biometrika Trust, vol. 102(3), pages 717-723.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    9. Kai Yang & Yiwei Zhao & Han Li & Dehui Wang, 2023. "On bivariate threshold Poisson integer-valued autoregressive processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 931-963, November.
    10. Tong, Howell, 2015. "Threshold models in time series analysis—Some reflections," Journal of Econometrics, Elsevier, vol. 189(2), pages 485-491.
    11. In Hong Chang & Rahul Mukerjee, 2008. "Bayesian and frequentist confidence intervals arising from empirical-type likelihoods," Biometrika, Biometrika Trust, vol. 95(1), pages 139-147.
    12. Athanasia S. Kalaitzi & Trevor W. Chamberlain, 2020. "Merchandise exports and economic growth: multivariate time series analysis for the United Arab Emirates," Journal of Applied Economics, Taylor & Francis Journals, vol. 23(1), pages 163-182, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    4. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    5. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    6. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    7. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    8. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    9. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    10. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    11. Xiaotong Shen & Wei Pan & Yunzhang Zhu & Hui Zhou, 2013. "On constrained and regularized high-dimensional regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 807-832, October.
    12. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    13. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    14. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    15. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    16. Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    18. Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
    19. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    20. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    21. Yanlin Tang & Liya Xiang & Zhongyi Zhu, 2014. "Risk Factor Selection in Rate Making: EM Adaptive LASSO for Zero‐Inflated Poisson Regression Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1112-1127, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:2:d:10.1007_s00362-025-01659-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.