IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i7d10.1007_s00362-024-01554-0.html
   My bibliography  Save this article

On some stable linear functional regression estimators based on random projections

Author

Listed:
  • Asma Ben Saber

    (Department of Mathematics)

  • Abderrazek Karoui

    (Department of Mathematics)

Abstract

In this work, we develop two stable estimators for solving linear functional regression problems. It is well known that such a problem is an ill-posed stochastic inverse problem. Hence, a special interest has to be devoted to the stability issue in the design of an estimator for solving such a problem. Our proposed estimators are based on combining a stable least-squares technique and a random projection of the slope function $$\beta _0(\cdot )\in L^2(J),$$ β 0 ( · ) ∈ L 2 ( J ) , where J is a compact interval. Moreover, these estimators have the advantage of having a fairly good convergence rate with reasonable computational load, since the involved random projections are generally performed over a fairly small dimensional subspace of $$L^2(J).$$ L 2 ( J ) . More precisely, the first estimator is given as a least-squares solution of a regularized minimization problem over a finite dimensional subspace of $$L^2(J).$$ L 2 ( J ) . In particular, we give an upper bound for the empirical risk error as well as the convergence rate of this estimator. The second proposed stable LFR estimator is based on combining the least-squares technique with a dyadic decomposition of the i.i.d. samples of the stochastic process, associated with the LFR model. In particular, we provide an $$L^2$$ L 2 -risk error of this second LFR estimator. Finally, we provide some numerical simulations on synthetic as well as on real data that illustrate the results of this work. These results indicate that our proposed estimators are competitive with some existing and popular LFR estimators.

Suggested Citation

  • Asma Ben Saber & Abderrazek Karoui, 2024. "On some stable linear functional regression estimators based on random projections," Statistical Papers, Springer, vol. 65(7), pages 4147-4178, September.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01554-0
    DOI: 10.1007/s00362-024-01554-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01554-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01554-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramsay, James O. & Ramsey, James B., 2002. "Functional data analysis of the dynamics of the monthly index of nondurable goods production," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 327-344, March.
    2. Cheng Chen & Shaojun Guo & Xinghao Qiao, 2022. "Functional Linear Regression: Dependence and Error Contamination," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 444-457, January.
    3. Piaoxuan Xiao & Guochang Wang, 2022. "Partial functional linear regression with autoregressive errors," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(13), pages 4515-4536, June.
    4. Shin, Hyejin & Hsing, Tailen, 2012. "Linear prediction in functional data analysis," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3680-3700.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    2. Hui Ding & Mei Yao & Riquan Zhang, 2023. "A new estimation in functional linear concurrent model with covariate dependent and noise contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 965-989, November.
    3. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    4. Anthony S. Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Development Economics Working Papers 22482, East Asian Bureau of Economic Research.
    5. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    6. Laukaitis, Algirdas & Rackauskas, Alfredas, 2005. "Functional data analysis for clients segmentation tasks," European Journal of Operational Research, Elsevier, vol. 163(1), pages 210-216, May.
    7. Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    8. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
    9. Qian Huang & Jinhong You & Liwen Zhang, 2022. "Efficient inference of longitudinal/functional data models with time‐varying additive structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 744-771, June.
    10. Bo Li & Sabri Boubaker & Zhenya Liu & Waël Louhichi & Yao Yao, 2023. "Exploring the Nonlinear Idiosyncratic Volatility Puzzle: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 527-559, August.
    11. Hengzhen Huang & Guangni Mo & Haiou Li & Hong-Bin Fang, 2022. "Representation Theorem and Functional CLT for RKHS-Based Function-on-Function Regressions," Mathematics, MDPI, vol. 10(14), pages 1-23, July.
    12. Sylvain Robbiano & Matthieu Saumard & Michel Curé, 2016. "Improving prediction performance of stellar parameters using functional models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(8), pages 1465-1476, June.
    13. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    14. Ramsey, James B. & Gallegati, Marco & Gallegati, Mauro & Semmler, Willi, 2010. "Instrumental variables and wavelet decompositions," Economic Modelling, Elsevier, vol. 27(6), pages 1498-1513, November.
    15. Wang, Jiangyan & Gu, Lijie & Yang, Lijian, 2022. "Oracle-efficient estimation for functional data error distribution with simultaneous confidence band," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    16. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    17. Siphumlile Mangisa & Sonali Das & Rangan Gupta, 2022. "Analyzing The Impact Of Brexit On Global Uncertainty Using Functional Linear Regression With Point Of Impact: The Role Of Currency And Equity Markets," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 67(04), pages 1377-1388, June.
    18. Laukaitis, Algirdas, 2008. "Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1607-1614, March.
    19. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    20. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01554-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.