IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v64y2023i2d10.1007_s00362-022-01325-9.html
   My bibliography  Save this article

Strong uniform consistency of the local linear relative error regression estimator under left truncation

Author

Listed:
  • Feriel Bouhadjera

    (MISTEA, Université de Montpellier, INRAE, Montpellier SupAgro)

  • Mohamed Lemdani

    (Universié de Lille, Fac. Pharmacie, Lab. Biomaths METRICS)

  • Elias Ould Saïd

    (Université du Littoral Cote d’Opale (ULCO), Laboratoire de Mathématiques pures et appliquées (LMPA))

Abstract

This paper is concerned with a nonparametric estimator of the regression function based on the local linear method when the loss function is the mean squared relative error and the data left truncated. The proposed method avoids the problem of boundary effects and is robust against the presence of outliers. Under suitable assumptions, we establish the uniform almost sure strong consistency with a rate over a compact set. A simulation study is conducted to comfort our theoretical result. This is made according to different cases, sample sizes, rates of truncation, in presence of outliers and a comparison study is made with respect to classical, local linear and relative error estimators. Finally, an experimental prediction is given.

Suggested Citation

  • Feriel Bouhadjera & Mohamed Lemdani & Elias Ould Saïd, 2023. "Strong uniform consistency of the local linear relative error regression estimator under left truncation," Statistical Papers, Springer, vol. 64(2), pages 421-447, April.
  • Handle: RePEc:spr:stpapr:v:64:y:2023:i:2:d:10.1007_s00362-022-01325-9
    DOI: 10.1007/s00362-022-01325-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01325-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01325-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    2. Elias Ould-Saïd & Mohamed Lemdani, 2006. "Asymptotic Properties of a Nonparametric Regression Function Estimator with Randomly Truncated Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 357-378, June.
    3. Wang, Jiang-Feng & Ma, Wei-Min & Fan, Guo-Liang & Wen, Li-Min, 2015. "Local linear quantile regression with truncated and dependent data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 232-240.
    4. Belkais Altendji & Jacques Demongeot & Ali Laksaci & Mustapha Rachdi, 2018. "Functional data analysis: estimation of the relative error in functional regression under random left-truncation model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(2), pages 472-490, April.
    5. Spierdijk, Laura, 2008. "Nonparametric conditional hazard rate estimation: A local linear approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2419-2434, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guessoum Zohra & Ould-Said Elias, 2009. "On nonparametric estimation of the regression function under random censorship model," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 159-177, April.
    2. Saâdia Rahmani & Oussama Bouanani, 2023. "Local linear estimation of the conditional cumulative distribution function: Censored functional data case," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 741-769, February.
    3. Han-Ying Liang & Elias Ould Saïd, 2018. "A weighted estimator of conditional hazard rate with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 155-189, February.
    4. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    5. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    6. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    7. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    8. Xiong, Xianzhu & Ou, Meijuan & Chen, Ailian, 2021. "Reweighted Nadaraya–Watson estimation of conditional density function in the right-censored model," Statistics & Probability Letters, Elsevier, vol. 168(C).
    9. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    10. Han-Ying Liang & Jacobo Uña-Álvarez & María Iglesias-Pérez, 2011. "Local polynomial estimation of a conditional mean function with dependent truncated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 653-677, November.
    11. Weiyu Li & Valentin Patilea, 2018. "A dimension reduction approach for conditional Kaplan–Meier estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 295-315, June.
    12. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    13. Hong-Xia Xu & Guo-Liang Fan & Zhen-Long Chen & Jiang-Feng Wang, 2018. "Weighted quantile regression and testing for varying-coefficient models with randomly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 565-588, October.
    14. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2015. "Tree-based censored regression with applications to insurance," Working Papers hal-01141228, HAL.
    15. Cao, Yongxiu & Yu, Jichang, 2023. "Adjusting for unmeasured confounding in survival causal effect using validation data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    16. Wenceslao González Manteiga & Cédric Heuchenne & César Sánchez Sellero & Alessandro Beretta, 2020. "Goodness-of-fit tests for censored regression based on artificial data points," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 599-615, June.
    17. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    18. Amorim, Ana Paula & de Uña-Álvarez, Jacobo & Meira-Machado, Luís, 2011. "Presmoothing the transition probabilities in the illness-death model," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 797-806, July.
    19. Uña-Álvarez, Jacobo de & González-Manteiga, Wenceslao, 1999. "Strong consistency under proportional censorship when covariables are present," Statistics & Probability Letters, Elsevier, vol. 42(3), pages 283-292, April.
    20. Jacobo Uña-Álvarez & Noël Veraverbeke, 2013. "Generalized copula-graphic estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 343-360, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:2:d:10.1007_s00362-022-01325-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.