IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i1p121-133.html
   My bibliography  Save this article

Fitting mixed-effects models when data are left truncated

Author

Listed:
  • Paulsen, Jostein
  • Lunde, Astrid
  • Skaug, Hans Julius

Abstract

Damage sizes, i.e. all damages occurring to a policy and not only those that are reported to an insurance company, are modelled as a linear mixed model. Only those damages that are larger than their deductibles are reported to the company, and this fact should be taken into account when analyzing such data. In statistical terms, the problem is to make inference in a linear mixed model with left truncated data. Estimation methods based on a Monte Carlo simulation of the likelihood are proposed, and extensive simulations to evaluate the quality of the methods are reported. The proposed methods are then used to analyze claimsizes for some marine insurance data, where shipowners represent random effects and technical data about the ships represent fixed effects.

Suggested Citation

  • Paulsen, Jostein & Lunde, Astrid & Skaug, Hans Julius, 2008. "Fitting mixed-effects models when data are left truncated," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 121-133, August.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:121-133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00048-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frees, Edward W. & Young, Virginia R. & Luo, Yu, 1999. "A longitudinal data analysis interpretation of credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 229-247, May.
    2. Malka Gorfine & David M. Zucker & Li Hsu, 2006. "Prospective survival analysis with a general semiparametric shared frailty model: A pseudo full likelihood approach," Biometrika, Biometrika Trust, vol. 93(3), pages 735-741, September.
    3. Elias Ould-Saïd & Mohamed Lemdani, 2006. "Asymptotic Properties of a Nonparametric Regression Function Estimator with Randomly Truncated Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 357-378, June.
    4. Edward Frees & Virginia Young & Yu Luo, 2001. "Case Studies Using Panel Data Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(4), pages 24-42.
    5. Nelder, J.A. & Verrall, R.J., 1997. "Credibility Theory and Generalized Linear Models," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 71-82, May.
    6. Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
    7. Katrien Antonio & Jan Beirlant & Tom Hoedemakers & Robert Verlaak, 2006. "Lognormal Mixed Models for Reported Claims Reserves," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(1), pages 30-48.
    8. Sun, Liuquan, 2006. "The strong law under a semiparametric model for truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1550-1558, August.
    9. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    10. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    11. Jewell, William S., 1974. "Credible Means are exact Bayesian for Exponential Families," ASTIN Bulletin, Cambridge University Press, vol. 8(1), pages 77-90, September.
    12. David Clayton, 2003. "Conditional likelihood inference under complex ascertainment using data augmentation," Biometrika, Biometrika Trust, vol. 90(4), pages 976-981, December.
    13. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    14. Maria Karlsson, 2006. "Estimators of Regression Parameters for Truncated and Censored Data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(3), pages 329-341, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jackson P. Lautier & Vladimir Pozdnyakov & Jun Yan, 2022. "Pricing Time-to-Event Contingent Cash Flows: A Discrete-Time Survival Analysis Approach," Papers 2201.04981, arXiv.org, revised Jan 2023.
    2. Karlsson, Maria & Lindmark, Anita, 2014. "truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i14).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alicja Wolny-Dominiak & Tomasz Żądło, 2021. "The Measures of Accuracy of Claim Frequency Credibility Predictor," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    2. Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
    3. Gigante, Patrizia & Picech, Liviana & Sigalotti, Luciano, 2013. "Claims reserving in the hierarchical generalized linear model framework," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 381-390.
    4. Dornheim, Harald & Brazauskas, Vytaras, 2011. "Robust-efficient credibility models with heavy-tailed claims: A mixed linear models perspective," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 72-84, January.
    5. Landsman, Zinoviy, 2002. "Credibility theory: a new view from the theory of second order optimal statistics," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 351-362, June.
    6. Ziegler, Andreas, 2002. "Simulated Classical Tests in the Multiperiod Multinomial Probit Model," ZEW Discussion Papers 02-38, ZEW - Leibniz Centre for European Economic Research.
    7. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    8. Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
    9. Zsolt Sandor, 2009. "Multinomial discrete choice models (in Russian)," Quantile, Quantile, issue 7, pages 9-19, September.
    10. Rennings, Klaus & Ziegler, Andreas & Zwick, Thomas, 2001. "Employment changes in environmentally innovative firms," ZEW Discussion Papers 01-46, ZEW - Leibniz Centre for European Economic Research.
    11. Xacur, Oscar Alberto Quijano & Garrido, José, 2018. "Bayesian credibility for GLMs," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 180-189.
    12. Yikai (Maxwell) Gong & Zhuangdi Li & Maria Milazzo & Kristen Moore & Matthew Provencher, 2018. "Credibility Methods for Individual Life Insurance," Risks, MDPI, vol. 6(4), pages 1-16, December.
    13. Wei Wang & Limin Wen & Zhixin Yang & Quan Yuan, 2020. "Quantile Credibility Models with Common Effects," Risks, MDPI, vol. 8(4), pages 1-10, September.
    14. Sandor, Zsolt & Andras, P.Peter, 2004. "Alternative sampling methods for estimating multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 120(2), pages 207-234, June.
    15. Pitselis, Georgios, 2004. "A seemingly unrelated regression model in a credibility framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 37-54, February.
    16. Arias, Carlos & Cox, Thomas L., 1999. "Maximum Simulated Likelihood: A Brief Introduction For Practitioners," Staff Papers 12662, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    17. Sándor, Z. & András, P., 2003. "Alternate Samplingmethods for Estimating Multivariate Normal Probabilities," Econometric Institute Research Papers EI 2003-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Andreas Ziegler, 2010. "Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis," CER-ETH Economics working paper series 10/125, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    19. Andreas Bayerstadler & Franz Benstetter & Christian Heumann & Fabian Winter, 2014. "A predictive modeling approach to increasing the economic effectiveness of disease management programs," Health Care Management Science, Springer, vol. 17(3), pages 284-301, September.
    20. Carlos Arias & THOMAS L. COX, 1999. "Maximum Simulated Likelihood: A Brief Introduction for Practitioners," Wisconsin-Madison Agricultural and Applied Economics Staff Papers 421, Wisconsin-Madison Agricultural and Applied Economics Department.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:121-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.