IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i4d10.1007_s00362-018-0998-9.html
   My bibliography  Save this article

New lower bound for Lee discrepancy of asymmetrical factorials

Author

Listed:
  • Liuping Hu

    (Jishou University)

  • Kashinath Chatterjee

    (Visva-Bharati University)

  • Jiaqi Liu

    (Jishou University)

  • Zujun Ou

    (Jishou University)

Abstract

Lee discrepancy has wide applications in design of experiments, which can be used to measure the uniformity of fractional factorials. An improved lower bound of Lee discrepancy for asymmetrical factorials with mixed two-, three- and four-level is presented. The new lower bound is more accurate for a lot of designs than other existing lower bound, which is a useful complement to the lower bounds of Lee discrepancy and can be served as a benchmark to search uniform designs with mixed levels in terms of Lee discrepancy.

Suggested Citation

  • Liuping Hu & Kashinath Chatterjee & Jiaqi Liu & Zujun Ou, 2020. "New lower bound for Lee discrepancy of asymmetrical factorials," Statistical Papers, Springer, vol. 61(4), pages 1763-1772, August.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-018-0998-9
    DOI: 10.1007/s00362-018-0998-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-0998-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-0998-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Yong-Dao & Ning, Jian-Hui & Song, Xie-Bing, 2008. "Lee discrepancy and its applications in experimental designs," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1933-1942, September.
    2. Hong Qin & Kai-Tai Fang, 2004. "Discrete discrepancy in factorial designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 60(1), pages 59-72, July.
    3. Zou, Na & Ren, Ping & Qin, Hong, 2009. "A note on Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 496-500, February.
    4. Yong-Dao Zhou & Hongquan Xu, 2014. "Space-Filling Fractional Factorial Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1134-1144, September.
    5. Zujun Ou & Kashinath Chatterjee & Hong Qin, 2011. "Lower bounds of various discrepancies on combined designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(1), pages 109-119, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biao Luo & Hongyi Li & Yingying Wei & Zujun Ou, 2022. "Uniform design with prior information of factors under weighted wrap-around $$L_2$$ L 2 -discrepancy," Computational Statistics, Springer, vol. 37(5), pages 2717-2739, November.
    2. Qiming Bai & Hongyi Li & Shixian Zhang & Jiezhong Tian, 2023. "Design Efficiency of the Asymmetric Minimum Projection Uniform Designs," Mathematics, MDPI, vol. 11(3), pages 1-20, February.
    3. Zongyi Hu & Jiaqi Liu & Yi Li & Hongyi Li, 2021. "Uniform augmented q-level designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(7), pages 969-995, October.
    4. Qiming Bai & Hongyi Li & Xingyou Huang & Huili Xue, 2023. "Design efficiency for minimum projection uniform designs with q levels," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 577-594, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liuping Hu & Zujun Ou & Hongyi Li, 2020. "Construction of four-level and mixed-level designs with zero Lee discrepancy," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 129-139, January.
    2. Zou, Na & Gou, Tingxun & Qin, Hong & Chatterjee, Kashinath, 2020. "Generalized foldover method for high-level designs," Statistics & Probability Letters, Elsevier, vol. 164(C).
    3. Elsawah, A.M. & Qin, Hong, 2015. "Lee discrepancy on symmetric three-level combined designs," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 273-280.
    4. Kang Wang & Zujun Ou & Jiaqi Liu & Hongyi Li, 2021. "Uniformity pattern of q-level factorials under mixture discrepancy," Statistical Papers, Springer, vol. 62(4), pages 1777-1793, August.
    5. Elsawah, A.M. & Qin, Hong, 2015. "A new strategy for optimal foldover two-level designs," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 116-126.
    6. Biao Luo & Hongyi Li & Yingying Wei & Zujun Ou, 2022. "Uniform design with prior information of factors under weighted wrap-around $$L_2$$ L 2 -discrepancy," Computational Statistics, Springer, vol. 37(5), pages 2717-2739, November.
    7. A. M. Elsawah, 2021. "Multiple doubling: a simple effective construction technique for optimal two-level experimental designs," Statistical Papers, Springer, vol. 62(6), pages 2923-2967, December.
    8. Bochuan Jiang & Yaping Wang & Mingyao Ai, 2022. "Search for minimum aberration designs with uniformity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 271-287, April.
    9. Zong-Feng Qi & Xue-Ru Zhang & Yong-Dao Zhou, 2018. "Generalized good lattice point sets," Computational Statistics, Springer, vol. 33(2), pages 887-901, June.
    10. Yong-Dao Zhou & Hongquan Xu, 2014. "Space-Filling Fractional Factorial Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1134-1144, September.
    11. A. M. Elsawah & Kai-Tai Fang & Xiao Ke, 2021. "New recommended designs for screening either qualitative or quantitative factors," Statistical Papers, Springer, vol. 62(1), pages 267-307, February.
    12. Yang, Xue & Yang, Gui-Jun & Su, Ya-Juan, 2018. "Uniform minimum moment aberration designs," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 26-33.
    13. Rong-Xian Yue & Kashinath Chatterjee, 2010. "Bayesian U-type design for nonparametric response surface prediction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(2), pages 219-231, September.
    14. Zujun Ou & Minghui Zhang & Hongyi Li, 2023. "Triple Designs: A Closer Look from Indicator Function," Mathematics, MDPI, vol. 11(3), pages 1-12, February.
    15. Narayanaswamy Balakrishnan & Hong Qin & Kashinath Chatterjee, 2016. "Generalized projection discrepancy and its applications in experimental designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 19-35, January.
    16. Wang, Sumin & Wang, Dongying & Sun, Fasheng, 2019. "A central limit theorem for marginally coupled designs," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 168-174.
    17. Fasheng Sun & Jie Chen & Min-Qian Liu, 2011. "Connections between uniformity and aberration in general multi-level factorials," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 305-315, May.
    18. Chatterjee, Kashinath & Qin, Hong, 2008. "A new look at discrete discrepancy," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2988-2991, December.
    19. Hong Qin & Na Zou & Kashinath Chatterjee, 2009. "Connection between uniformity and minimum moment aberration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 79-88, June.
    20. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-018-0998-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.