IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i13p1933-1942.html
   My bibliography  Save this article

Lee discrepancy and its applications in experimental designs

Author

Listed:
  • Zhou, Yong-Dao
  • Ning, Jian-Hui
  • Song, Xie-Bing

Abstract

Various discrepancies have been defined in uniform designs, such as centered L2-discrepancy, wrap-around L2-discrepancy and discrete discrepancy. Among them the discrete discrepancy can explore relationships among uniform designs, fractional factorial designs, and combinational designs. However, the discrete discrepancy is mainly good for two-level factorial designs. In this paper, a new discrepancy based on the Lee distance, Lee discrepancy, is proposed and its computational formula is given. The Lee discrepancy can expand the relationships between the discrete discrepancy and some criteria for factorial designs with multiple levels. Some lower bounds of the Lee discrepancy for symmetrical and asymmetrical designs are given, and some connections between the Lee discrepancy and the generalized minimum aberration are considered. Finally, relationships between the Lee discrepancy and majorization framework are also considered.

Suggested Citation

  • Zhou, Yong-Dao & Ning, Jian-Hui & Song, Xie-Bing, 2008. "Lee discrepancy and its applications in experimental designs," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1933-1942, September.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1933-1942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00061-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kai-Tai Fang & Dennis K. J. Lin & Min-Qian Liu, 2003. "Optimal mixed-level supersaturated design," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 58(3), pages 279-291, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liuping Hu & Zujun Ou & Hongyi Li, 2020. "Construction of four-level and mixed-level designs with zero Lee discrepancy," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 129-139, January.
    2. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
    3. Biao Luo & Hongyi Li & Yingying Wei & Zujun Ou, 2022. "Uniform design with prior information of factors under weighted wrap-around $$L_2$$ L 2 -discrepancy," Computational Statistics, Springer, vol. 37(5), pages 2717-2739, November.
    4. A. M. Elsawah, 2018. "Choice of optimal second stage designs in two-stage experiments," Computational Statistics, Springer, vol. 33(2), pages 933-965, June.
    5. Yan-Ping Gao & Si-Yu Yi & Yong-Dao Zhou, 2022. "Level-augmented uniform designs," Statistical Papers, Springer, vol. 63(2), pages 441-460, April.
    6. Zou, Na & Ren, Ping & Qin, Hong, 2009. "A note on Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 496-500, February.
    7. A. M. Elsawah & Kai-Tai Fang, 2018. "New results on quaternary codes and their Gray map images for constructing uniform designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 307-336, April.
    8. Zou, Na & Gou, Tingxun & Qin, Hong & Chatterjee, Kashinath, 2020. "Generalized foldover method for high-level designs," Statistics & Probability Letters, Elsevier, vol. 164(C).
    9. Elsawah, A.M. & Qin, Hong, 2015. "A new strategy for optimal foldover two-level designs," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 116-126.
    10. Elsawah, A.M. & Qin, Hong, 2015. "Lee discrepancy on symmetric three-level combined designs," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 273-280.
    11. Kang Wang & Zujun Ou & Jiaqi Liu & Hongyi Li, 2021. "Uniformity pattern of q-level factorials under mixture discrepancy," Statistical Papers, Springer, vol. 62(4), pages 1777-1793, August.
    12. A. M. Elsawah & Kai-Tai Fang & Ping He & Hong Qin, 2021. "Sharp lower bounds of various uniformity criteria for constructing uniform designs," Statistical Papers, Springer, vol. 62(3), pages 1461-1482, June.
    13. Liuping Hu & Hongyi Li & Zujun Ou, 2019. "Constructing optimal four-level designs via Gray map code," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(5), pages 573-587, July.
    14. Yong-Dao Zhou & Hongquan Xu, 2014. "Space-Filling Fractional Factorial Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1134-1144, September.
    15. Liuping Hu & Kashinath Chatterjee & Jiaqi Liu & Zujun Ou, 2020. "New lower bound for Lee discrepancy of asymmetrical factorials," Statistical Papers, Springer, vol. 61(4), pages 1763-1772, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koukouvinos, C. & Stylianou, S., 2004. "Optimal multi-level supersaturated designs constructed from linear and quadratic functions," Statistics & Probability Letters, Elsevier, vol. 69(2), pages 199-211, August.
    2. Chatterjee, Kashinath & Qin, Hong, 2008. "A new look at discrete discrepancy," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2988-2991, December.
    3. Hong Qin & Na Zou & Kashinath Chatterjee, 2009. "Connection between uniformity and minimum moment aberration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 79-88, June.
    4. Armando Javier Ríos-Lira & Yaquelin Verenice Pantoja-Pacheco & José Antonio Vázquez-López & José Alfredo Jiménez-García & Martha Laura Asato-España & Moisés Tapia-Esquivias, 2021. "Alias Structures and Sequential Experimentation for Mixed-Level Designs," Mathematics, MDPI, vol. 9(23), pages 1-21, November.
    5. Koukouvinos, C. & Mantas, P., 2005. "Construction of some E(fNOD) optimal mixed-level supersaturated designs," Statistics & Probability Letters, Elsevier, vol. 74(4), pages 312-321, October.
    6. Nguyen, Nam-Ky & Liu, Min-Qian, 2008. "An algorithmic approach to constructing mixed-level orthogonal and near-orthogonal arrays," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5269-5276, August.
    7. Chen, Jie & Liu, Min-Qian, 2008. "Optimal mixed-level supersaturated design with general number of runs," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2496-2502, October.
    8. Chasiotis, Vasilis & Kounias, Stratis & Farmakis, Nikolaos, 2017. "Upper bound on the number of multi-level columns in equally replicated optimal designs minimizing the E(fNOD) criterion," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 269-274.
    9. Yang, Xue & Chen, Hao & Liu, Min-Qian, 2014. "Resolvable orthogonal array-based uniform sliced Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 108-115.
    10. Liu, Min-Qian & Zhang, Li, 2009. "An algorithm for constructing mixed-level k-circulant supersaturated designs," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2465-2470, May.
    11. Li, Peng-Fei & Liu, Min-Qian & Zhang, Run-Chu, 2004. "Some theory and the construction of mixed-level supersaturated designs," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 105-116, August.
    12. Mandal, B.N. & Koukouvinos, C., 2014. "Optimal multi-level supersaturated designs through integer programming," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 183-191.
    13. Rong-Xian Yue & Kashinath Chatterjee, 2010. "Bayesian U-type design for nonparametric response surface prediction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(2), pages 219-231, September.
    14. S. Georgiou & C. Koukouvinos, 2006. "Multi-level k-circulant Supersaturated Designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 64(2), pages 209-220, October.
    15. Li, Hongyi & Qin, Hong, 2018. "Some new results on Triple designs," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 1-9.
    16. Narayanaswamy Balakrishnan & Hong Qin & Kashinath Chatterjee, 2016. "Generalized projection discrepancy and its applications in experimental designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 19-35, January.
    17. Gao, Yanping & Yi, Siyu & Zhou, Yongdao, 2022. "Maximin L1-distance Range-fixed Level-augmented designs," Statistics & Probability Letters, Elsevier, vol. 186(C).
    18. K. Chatterjee & K. Drosou & S. D. Georgiou & C. Koukouvinos, 2018. "Multi-level and mixed-level k-circulant supersaturated designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 337-355, April.
    19. Huang, Hengzhen & Yang, Jinyu & Liu, Min-Qian, 2014. "Functionally induced priors for componentwise Gibbs sampler in the analysis of supersaturated designs," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 1-12.
    20. Gupta, V.K. & Singh, Poonam & Kole, Basudev & Parsad, Rajender, 2009. "Construction of efficient unbalanced mixed-level supersaturated designs," Statistics & Probability Letters, Elsevier, vol. 79(22), pages 2359-2366, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1933-1942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.