IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i4p496-500.html
   My bibliography  Save this article

A note on Lee discrepancy

Author

Listed:
  • Zou, Na
  • Ren, Ping
  • Qin, Hong

Abstract

The objective of this paper is to study the issue of Lee discrepancy [Zhou, Y.D., Ning, J.H., Song, X.B., 2008. Lee discrepancy and its applications in experimental designs. Statist. Probab. Lett. 78, 1933-1942], which can be used to measure the uniformity of fractional factorials. Here we present two improved lower bounds of Lee discrepancy of fractional factorials with two or three levels, and develop some links between Lee discrepancy and minimum moment aberration [Xu, H., 2003. Minimum moment aberration for nonregular designs and supersaturated designs. Statist. Sinica 13, 691-708].

Suggested Citation

  • Zou, Na & Ren, Ping & Qin, Hong, 2009. "A note on Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 496-500, February.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:4:p:496-500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00456-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred J. Hickernell, 2002. "Uniform designs limit aliasing," Biometrika, Biometrika Trust, vol. 89(4), pages 893-904, December.
    2. Zhou, Yong-Dao & Ning, Jian-Hui & Song, Xie-Bing, 2008. "Lee discrepancy and its applications in experimental designs," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1933-1942, September.
    3. Fang, Kai-Tai & Qin, Hong, 2003. "A note on construction of nearly uniform designs with large number of runs," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 215-224, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liuping Hu & Zujun Ou & Hongyi Li, 2020. "Construction of four-level and mixed-level designs with zero Lee discrepancy," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 129-139, January.
    2. Liuping Hu & Kashinath Chatterjee & Jiaqi Liu & Zujun Ou, 2020. "New lower bound for Lee discrepancy of asymmetrical factorials," Statistical Papers, Springer, vol. 61(4), pages 1763-1772, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biao Luo & Hongyi Li & Yingying Wei & Zujun Ou, 2022. "Uniform design with prior information of factors under weighted wrap-around $$L_2$$ L 2 -discrepancy," Computational Statistics, Springer, vol. 37(5), pages 2717-2739, November.
    2. Kang Wang & Zujun Ou & Jiaqi Liu & Hongyi Li, 2021. "Uniformity pattern of q-level factorials under mixture discrepancy," Statistical Papers, Springer, vol. 62(4), pages 1777-1793, August.
    3. A. M. Elsawah & Kai-Tai Fang & Ping He & Hong Qin, 2021. "Sharp lower bounds of various uniformity criteria for constructing uniform designs," Statistical Papers, Springer, vol. 62(3), pages 1461-1482, June.
    4. Fasheng Sun & Jie Chen & Min-Qian Liu, 2011. "Connections between uniformity and aberration in general multi-level factorials," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 305-315, May.
    5. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    6. Chatterjee, Kashinath & Qin, Hong, 2008. "A new look at discrete discrepancy," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2988-2991, December.
    7. Hong Qin & Na Zou & Kashinath Chatterjee, 2009. "Connection between uniformity and minimum moment aberration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 79-88, June.
    8. Fang Pang & Min-Qian Liu, 2012. "A note on connections among criteria for asymmetrical factorials," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 23-32, January.
    9. Mingyao Ai & Shuyuan He, 2006. "Interaction balance for symmetrical factorial designs with generalized minimum aberration," Statistical Papers, Springer, vol. 47(1), pages 125-135, January.
    10. E. Androulakis & C. Koukouvinos, 2013. "A new variable selection method for uniform designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2564-2578, December.
    11. Yong-Dao Zhou & Hongquan Xu, 2014. "Space-Filling Fractional Factorial Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1134-1144, September.
    12. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
    13. Yan-Ping Gao & Si-Yu Yi & Yong-Dao Zhou, 2022. "Level-augmented uniform designs," Statistical Papers, Springer, vol. 63(2), pages 441-460, April.
    14. Li, Peng-Fei & Chen, Bao-Jiang & Liu, Min-Qian & Zhang, Run-Chu, 2006. "A note on minimum aberration and clear criteria," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1007-1011, May.
    15. Elsawah, A.M. & Qin, Hong, 2015. "A new strategy for optimal foldover two-level designs," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 116-126.
    16. Liuping Hu & Kashinath Chatterjee & Jiaqi Liu & Zujun Ou, 2020. "New lower bound for Lee discrepancy of asymmetrical factorials," Statistical Papers, Springer, vol. 61(4), pages 1763-1772, August.
    17. Yang Huang & Yongdao Zhou, 2022. "Convergence of Uniformity Criteria and the Application in Numerical Integration," Mathematics, MDPI, vol. 10(19), pages 1-20, October.
    18. Bochuan Jiang & Fei Wang & Yaping Wang, 2022. "Construction of uniform mixed-level designs through level permutations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 753-770, August.
    19. Chen, Jie & Liu, Min-Qian, 2008. "Optimal mixed-level supersaturated design with general number of runs," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2496-2502, October.
    20. Yang, Xue & Chen, Hao & Liu, Min-Qian, 2014. "Resolvable orthogonal array-based uniform sliced Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 108-115.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:4:p:496-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.