IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v118y2016icp24-31.html
   My bibliography  Save this article

Constructing optimal asymmetric combined designs via Lee discrepancy

Author

Listed:
  • Elsawah, A.M.

Abstract

The main objective of the present paper is to provide an answer to the question: How to construct optimal combined designs, whether regular or nonregular? In this paper, we take the Lee discrepancy as the optimality measure to construct the optimal mixed levels combined designs, which are most commonly used in practice. Equivalence between any combined design and its complementary combined design is investigated, which is a very useful constraint that reduce the search space for the optimal combined designs.

Suggested Citation

  • Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
  • Handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:24-31
    DOI: 10.1016/j.spl.2016.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216300906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elsawah, A.M. & Qin, Hong, 2015. "A new strategy for optimal foldover two-level designs," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 116-126.
    2. A. M. Elsawah & Hong Qin, 2016. "Asymmetric uniform designs based on mixture discrepancy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2280-2294, September.
    3. Elsawah, A.M. & Qin, Hong, 2015. "Mixture discrepancy on symmetric balanced designs," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 123-132.
    4. Elsawah, A.M. & Qin, Hong, 2015. "Lee discrepancy on symmetric three-level combined designs," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 273-280.
    5. Fang, Kai-Tai & Lin, Dennis K. J. & Qin, Hong, 2003. "A note on optimal foldover design," Statistics & Probability Letters, Elsevier, vol. 62(3), pages 245-250, April.
    6. Zhou, Yong-Dao & Ning, Jian-Hui & Song, Xie-Bing, 2008. "Lee discrepancy and its applications in experimental designs," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1933-1942, September.
    7. Elsawah, A.M. & Qin, Hong, 2014. "New lower bound for centered L2-discrepancy of four-level U-type designs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 65-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. M. Elsawah, 2018. "Choice of optimal second stage designs in two-stage experiments," Computational Statistics, Springer, vol. 33(2), pages 933-965, June.
    2. A. M. Elsawah & Kai-Tai Fang, 2020. "New foundations for designing U-optimal follow-up experiments with flexible levels," Statistical Papers, Springer, vol. 61(2), pages 823-849, April.
    3. A. M. Elsawah & Kai-Tai Fang & Ping He & Hong Qin, 2021. "Sharp lower bounds of various uniformity criteria for constructing uniform designs," Statistical Papers, Springer, vol. 62(3), pages 1461-1482, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsawah, A.M. & Qin, Hong, 2015. "A new strategy for optimal foldover two-level designs," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 116-126.
    2. A. M. Elsawah & Hong Qin, 2016. "Asymmetric uniform designs based on mixture discrepancy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2280-2294, September.
    3. Zou, Na & Gou, Tingxun & Qin, Hong & Chatterjee, Kashinath, 2020. "Generalized foldover method for high-level designs," Statistics & Probability Letters, Elsevier, vol. 164(C).
    4. A. M. Elsawah & Kai-Tai Fang, 2020. "New foundations for designing U-optimal follow-up experiments with flexible levels," Statistical Papers, Springer, vol. 61(2), pages 823-849, April.
    5. Elsawah, A.M. & Qin, Hong, 2015. "Lee discrepancy on symmetric three-level combined designs," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 273-280.
    6. Elsawah, A.M. & Qin, Hong, 2015. "Mixture discrepancy on symmetric balanced designs," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 123-132.
    7. A. M. Elsawah, 2018. "Choice of optimal second stage designs in two-stage experiments," Computational Statistics, Springer, vol. 33(2), pages 933-965, June.
    8. A. M. Elsawah & Kai-Tai Fang, 2018. "New results on quaternary codes and their Gray map images for constructing uniform designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 307-336, April.
    9. A. M. Elsawah, 2021. "Multiple doubling: a simple effective construction technique for optimal two-level experimental designs," Statistical Papers, Springer, vol. 62(6), pages 2923-2967, December.
    10. Yong-Dao Zhou & Hongquan Xu, 2014. "Space-Filling Fractional Factorial Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1134-1144, September.
    11. A. M. Elsawah & Kai-Tai Fang & Xiao Ke, 2021. "New recommended designs for screening either qualitative or quantitative factors," Statistical Papers, Springer, vol. 62(1), pages 267-307, February.
    12. Liuping Hu & Kashinath Chatterjee & Jiaqi Liu & Zujun Ou, 2020. "New lower bound for Lee discrepancy of asymmetrical factorials," Statistical Papers, Springer, vol. 61(4), pages 1763-1772, August.
    13. Ai, Mingyao & Hickernell, Fred J. & Lin, Dennis K.J., 2008. "Optimal foldover plans for regular s-level fractional factorial designs," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 896-903, May.
    14. Zujun Ou & Kashinath Chatterjee & Hong Qin, 2011. "Lower bounds of various discrepancies on combined designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(1), pages 109-119, July.
    15. Kang Wang & Zujun Ou & Jiaqi Liu & Hongyi Li, 2021. "Uniformity pattern of q-level factorials under mixture discrepancy," Statistical Papers, Springer, vol. 62(4), pages 1777-1793, August.
    16. A. M. Elsawah & Hong Qin, 2017. "Optimum mechanism for breaking the confounding effects of mixed-level designs," Computational Statistics, Springer, vol. 32(2), pages 781-802, June.
    17. Stelios Georgiou & Christos Koukouvinos & Min-Qian Liu, 2014. "U-type and column-orthogonal designs for computer experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1057-1073, November.
    18. Yan-Ping Gao & Si-Yu Yi & Yong-Dao Zhou, 2022. "Level-augmented uniform designs," Statistical Papers, Springer, vol. 63(2), pages 441-460, April.
    19. Caporale, Diana & De Lucia, Caterina, 2015. "Social acceptance of on-shore wind energy in Apulia Region (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1378-1390.
    20. Bochuan Jiang & Fei Wang & Yaping Wang, 2022. "Construction of uniform mixed-level designs through level permutations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 753-770, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:24-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.