IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v60y2019i1d10.1007_s00362-016-0839-7.html
   My bibliography  Save this article

Estimation methods for the LRD parameter under a change in the mean

Author

Listed:
  • Aeneas Rooch

    (Ruhr-Universität Bochum)

  • Ieva Zelo

    (Technische Universität Dortmund)

  • Roland Fried

    (Technische Universität Dortmund)

Abstract

When analyzing time series which are supposed to exhibit long-range dependence (LRD), a basic issue is the estimation of the LRD parameter, for example the Hurst parameter $$H \in (1/2, 1)$$ H ∈ ( 1 / 2 , 1 ) . Conventional estimators of H easily lead to spurious detection of long memory if the time series includes a shift in the mean. This defect has fatal consequences in change-point problems: Tests for a level shift rely on H, which needs to be estimated before, but this estimation is distorted by the level shift. We investigate two blocks approaches to adapt estimators of H to the case that the time series includes a jump and compare them with other natural techniques as well as with estimators based on the trimming idea via simulations. These techniques improve the estimation of H if there is indeed a change in the mean. In the absence of such a change, the methods little affect the usual estimation. As adaption, we recommend an overlapping blocks approach: If one uses a consistent estimator, the adaption will preserve this property and it performs well in simulations.

Suggested Citation

  • Aeneas Rooch & Ieva Zelo & Roland Fried, 2019. "Estimation methods for the LRD parameter under a change in the mean," Statistical Papers, Springer, vol. 60(1), pages 313-347, February.
  • Handle: RePEc:spr:stpapr:v:60:y:2019:i:1:d:10.1007_s00362-016-0839-7
    DOI: 10.1007/s00362-016-0839-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0839-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0839-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    2. Philipp Sibbertsen, 2004. "Long memory versus structural breaks: An overview," Statistical Papers, Springer, vol. 45(4), pages 465-515, October.
    3. Philipp Sibbertsen & Juliane Willert, 2012. "Testing for a break in persistence under long-range dependencies and mean shifts," Statistical Papers, Springer, vol. 53(2), pages 357-370, May.
    4. Carlos Velasco, 1999. "Gaussian Semiparametric Estimation of Non‐stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(1), pages 87-127, January.
    5. Herold Dehling & Aeneas Rooch & Murad S. Taqqu, 2013. "Non-Parametric Change-Point Tests for Long-Range Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 153-173, March.
    6. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    7. Clifford M. Hurvich & Kaizo I. Beltrao, 1993. "Asymptotics For The Low‐Frequency Ordinates Of The Periodogram Of A Long‐Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(5), pages 455-472, September.
    8. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    9. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    10. Kokoszka, Piotr & Leipus, Remigijus, 1998. "Change-point in the mean of dependent observations," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 385-393, November.
    11. Xiaofeng Shao, 2011. "A simple test of changes in mean in the possible presence of long‐range dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 598-606, November.
    12. Fabrizio Iacone, 2010. "Local Whittle estimation of the memory parameter in presence of deterministic components," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 37-49, January.
    13. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    14. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    15. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    16. John T. Barkoulas & Christopher F. Baum & Nickolaos Travlos, 1996. "Long Memory in the Greek Stock Market," Boston College Working Papers in Economics 356., Boston College Department of Economics.
    17. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    18. Cheung, Yin-Wong & Lai, Kon S., 1995. "A search for long memory in international stock market returns," Journal of International Money and Finance, Elsevier, vol. 14(4), pages 597-615, August.
    19. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sven Otto, 2020. "Unit Root Testing with Slowly Varying Trends," Papers 2003.04066, arXiv.org, revised Aug 2020.
    2. Sven Otto, 2021. "Unit root testing with slowly varying trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 85-106, January.
    3. Valdério Anselmo Reisen & Céline Lévy-Leduc & Edson Zambon Monte & Pascal Bondon, 2024. "A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method," Statistical Papers, Springer, vol. 65(5), pages 2865-2886, July.
    4. Ieva Axt & Roland Fried, 2020. "On variance estimation under shifts in the mean," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 417-457, September.
    5. Hanan Elsaied & Roland Fried, 2021. "On robust estimation of negative binomial INARCH models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 137-158, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    3. Guglielmo Maria Caporale & Luis A. Gil‐Alana & James C. Orlando, 2016. "Linkages Between the US and European Stock Markets: A Fractional Cointegration Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 143-153, April.
    4. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    5. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    6. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    7. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    8. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    9. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    10. Mr. Jun Nagayasu, 2003. "The Efficiency of the Japanese Equity Market," IMF Working Papers 2003/142, International Monetary Fund.
    11. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    12. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    13. Erhard Reschenhofer & Manveer K. Mangat, 2020. "Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data," Econometrics, MDPI, vol. 8(4), pages 1-15, October.
    14. Kim Liow, 2009. "Long-term Memory in Volatility: Some Evidence from International Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 39(4), pages 415-438, November.
    15. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
    16. Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
    17. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    18. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    19. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    20. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:1:d:10.1007_s00362-016-0839-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.