IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v8y2020i4p40-d425895.html
   My bibliography  Save this article

Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data

Author

Listed:
  • Erhard Reschenhofer

    (Department of Statistics and Operations Research, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria)

  • Manveer K. Mangat

    (Department of Statistics and Operations Research, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria)

Abstract

For typical sample sizes occurring in economic and financial applications, the squared bias of estimators for the memory parameter is small relative to the variance. Smoothing is therefore a suitable way to improve the performance in terms of the mean squared error. However, in an analysis of financial high-frequency data, where the estimates are obtained separately for each day and then combined by averaging, the variance decreases with the sample size but the bias remains fixed. This paper proposes a method of smoothing that does not entail an increase in the bias. This method is based on the simultaneous examination of different partitions of the data. An extensive simulation study is carried out to compare it with conventional estimation methods. In this study, the new method outperforms its unsmoothed competitors with respect to the variance and its smoothed competitors with respect to the bias. Using the results of the simulation study for the proper interpretation of the empirical results obtained from a financial high-frequency dataset, we conclude that significant long-range dependencies are present only in the intraday volatility but not in the intraday returns. Finally, the robustness of these findings against daily and weekly periodic patterns is established.

Suggested Citation

  • Erhard Reschenhofer & Manveer K. Mangat, 2020. "Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data," Econometrics, MDPI, vol. 8(4), pages 1-15, October.
  • Handle: RePEc:gam:jecnmx:v:8:y:2020:i:4:p:40-:d:425895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/8/4/40/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/8/4/40/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergio R. S. Souza & Benjamin M. Tabak & Daniel O. Cajueiro, 2008. "Long-Range Dependence In Exchange Rates: The Case Of The European Monetary System," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 199-223.
    2. Manveer Kaur Mangat & Erhard Reschenhofer, 2019. "Testing for Long-Range Dependence in Financial Time Series," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 11(2), pages 93-106, June.
    3. John Barkoulas & Christopher Baum & Nickolaos Travlos, 2000. "Long memory in the Greek stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 177-184.
    4. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    5. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    6. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    7. Gemai Chen & Bovas Abraham & Shelton Peiris, 1994. "Lag Window Estimation Of The Degree Of Differencing In Fractionally Integrated Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 473-487, September.
    8. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    9. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    10. Grau-Carles, Pilar, 2000. "Empirical evidence of long-range correlations in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 396-404.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    13. Uwe Hassler, 1993. "Regression Of Spectral Estimators With Fractionally Integrated Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(4), pages 369-380, July.
    14. Cheung, Yin-Wong & Lai, Kon S., 1995. "A search for long memory in international stock market returns," Journal of International Money and Finance, Elsevier, vol. 14(4), pages 597-615, August.
    15. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    16. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    17. Jonathan A. Batten & Cetin Ciner & Brian M. Lucey & Peter G. Szilagyi, 2013. "The structure of gold and silver spread returns," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 561-570, March.
    18. Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
    19. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    20. Batten, Jonathan A. & Szilagyi, Peter G., 2007. "Covered interest parity arbitrage and temporal long-term dependence between the US dollar and the Yen," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 409-421.
    21. Olan Henry, 2002. "Long memory in stock returns: some international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 725-729.
    22. Hauser, Michael A. & Reschenhofer, Erhard, 1995. "Estimation of the fractionally differencing parameter with the R/S method," Computational Statistics & Data Analysis, Elsevier, vol. 20(5), pages 569-579, November.
    23. Batten, Jonathan A. & Ellis, Craig A. & Fethertson, Thomas A., 2008. "Sample period selection and long-term dependence: New evidence from the Dow Jones index," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1126-1140.
    24. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    25. Crato, Nuno & de Lima, Pedro J. F., 1994. "Long-range dependence in the conditional variance of stock returns," Economics Letters, Elsevier, vol. 45(3), pages 281-285.
    26. Valderio A. Reisen, 1994. "ESTIMATION OF THE FRACTIONAL DIFFERENCE PARAMETER IN THE ARIMA(p, d, q) MODEL USING THE SMOOTHED PERIODOGRAM," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(3), pages 335-350, May.
    27. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    2. Auer, Benjamin R., 2016. "On time-varying predictability of emerging stock market returns," Emerging Markets Review, Elsevier, vol. 27(C), pages 1-13.
    3. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
    4. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    5. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    6. Benjamin Rainer Auer, 2018. "Are standard asset pricing factors long-range dependent?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(1), pages 66-88, January.
    7. Yalama, Abdullah & Celik, Sibel, 2013. "Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market," Economic Modelling, Elsevier, vol. 30(C), pages 67-72.
    8. Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
    9. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    10. Lisana B. Martinez & M. Belén Guercio & Aurelio Fernandez Bariviera & Antonio Terceño, 2018. "The impact of the financial crisis on the long-range memory of European corporate bond and stock markets," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(1), pages 1-15, February.
    11. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    12. Auer, Benjamin R., 2016. "On the performance of simple trading rules derived from the fractal dynamics of gold and silver price fluctuations," Finance Research Letters, Elsevier, vol. 16(C), pages 255-267.
    13. Luis Gil-Alana, 2010. "Testing persistence in the context of conditional heteroscedasticity errors," Applied Financial Economics, Taylor & Francis Journals, vol. 20(22), pages 1709-1723.
    14. Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
    15. Erhard Reschenhofer & Thomas Stark & Manveer K. Mangat, 2020. "Robust Estimation of the Memory Parameter," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(4), pages 1-5.
    16. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    17. Bhandari, Avishek, 2020. "Long Memory and Correlation Structures of Select Stock Returns Using Novel Wavelet and Fractal Connectivity Networks," MPRA Paper 101946, University Library of Munich, Germany.
    18. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    19. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    20. Guglielmo Maria Caporale & Luis Gil-Alana, 2011. "The weekly structure of US stock prices," Applied Financial Economics, Taylor & Francis Journals, vol. 21(23), pages 1757-1764.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:8:y:2020:i:4:p:40-:d:425895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.