IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i4p412-422.html
   My bibliography  Save this article

Empirical likelihood for semiparametric varying-coefficient partially linear regression models

Author

Listed:
  • You, Jinhong
  • Zhou, Yong

Abstract

This paper is concerned with the estimating problem of the varying-coefficient partially linear regression model. We apply the empirical method to this semiparametric model. An empirical log-likelihood ratio for the parametric components, which are of primary interest, is proposed and the nonparametric version of the Wilk's theorem is derived. Thus, the confidence regions of the parametric components with asymptotically correct coverage probabilities can be constructed. Compared with those based on normal approximation, the confidence regions based on the empirical likelihood have two advantages: (1) they do not have the predetermined symmetry, which enables them to better correspond with the true shape of the underlying distribution; (2) they do not involve any asymptotic covariance matrix estimation and hence are robust against the heteroscedasticity. Some simulations and an application are conducted to illustrate the proposed method.

Suggested Citation

  • You, Jinhong & Zhou, Yong, 2006. "Empirical likelihood for semiparametric varying-coefficient partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 412-422, February.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:4:p:412-422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00313-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Jian & Lau, Tai-Shing, 2000. "Empirical Likelihood for Partially Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 132-148, January.
    2. Li, Qi, et al, 2002. "Semiparametric Smooth Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 412-422, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Si-Lian & Cui, Jian-Ling & Mei, Chang-Lin & Wang, Chun-Wei, 2014. "Estimation and inference of semi-varying coefficient models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 70-93.
    2. Zhensheng Huang & Xing Sun & Riquan Zhang, 2022. "Estimation for partially varying-coefficient single-index models with distorted measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 175-201, February.
    3. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    4. Peixin Zhao & Liugen Xue, 2009. "Empirical likelihood inferences for semiparametric varying-coefficient partially linear errors-in-variables models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 907-923.
    5. Ai-Ai Liu & Han-Ying Liang, 2017. "Jackknife empirical likelihood of error variance in partially linear varying-coefficient errors-in-variables models," Statistical Papers, Springer, vol. 58(1), pages 95-122, March.
    6. Hu, Xuemei & Wang, Zhizhong & Liu, Feng, 2008. "Zero finite-order serial correlation test in a semi-parametric varying-coefficient partially linear errors-in-variables model," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1560-1569, September.
    7. Tang, Xingyu & Li, Jianbo & Lian, Heng, 2013. "Empirical likelihood for partially linear proportional hazards models with growing dimensions," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 22-32.
    8. Huang, Zhensheng & Zhou, Zhangong & Jiang, Rong & Qian, Weimin & Zhang, Riquan, 2010. "Empirical likelihood based inference for semiparametric varying coefficient partially linear models with error-prone linear covariates," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 497-504, March.
    9. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.
    10. Zhaoliang Wang & Liugen Xue & Gaorong Li & Fei Lu, 2019. "Spline estimator for ultra-high dimensional partially linear varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 657-677, June.
    11. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    12. Huang, Zhensheng & Zhang, Riquan, 2009. "Empirical likelihood for nonparametric parts in semiparametric varying-coefficient partially linear models," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1798-1808, August.
    13. Zhao, Peixin & Xue, Liugen, 2009. "Variable selection for semiparametric varying coefficient partially linear models," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2148-2157, October.
    14. Guo-Liang Fan & Han-Ying Liang & Zhen-Sheng Huang, 2012. "Empirical likelihood for partially time-varying coefficient models with dependent observations," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 71-84.
    15. Hu, Xuemei & Wang, Zhizhong & Zhao, Zhiwei, 2009. "Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1044-1052, April.
    16. Peixin Zhao & Liugen Xue, 2011. "Variable selection for varying coefficient models with measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 231-245, September.
    17. Li, Gaorong & Lin, Lu & Zhu, Lixing, 2012. "Empirical likelihood for a varying coefficient partially linear model with diverging number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 85-111.
    18. Yang, Hu & Li, Tingting, 2010. "Empirical likelihood for semiparametric varying coefficient partially linear models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 80(2), pages 111-121, January.
    19. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
    20. He, Bang-Qiang & Hong, Xing-Jian & Fan, Guo-Liang, 2017. "Block empirical likelihood for partially linear panel data models with fixed effects," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 128-138.
    21. Na Li & Xingzhong Xu & Xuhua Liu, 2011. "Testing the constancy in varying-coefficient regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 409-438, November.
    22. Peixin Zhao & Liugen Xue, 2012. "Variable selection in semiparametric regression analysis for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 213-231, February.
    23. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    2. Wei Yu & Cuizhen Niu & Wangli Xu, 2014. "An empirical likelihood inference for the coefficient difference of a two-sample linear model with missing response data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 675-693, July.
    3. Samuele Centorrino & Jean-Pierre Florens & Jean-Michel Loubes, 2022. "Fairness constraint in Structural Econometrics and Application to fair estimation using Instrumental Variables," Papers 2202.08977, arXiv.org.
    4. Cliff J. Huang & Tsu-Tan Fu & Hung-Pin Lai & Yung-Lieh Yang, 2017. "Semiparametric smooth coefficient quantile estimation of the production profile," Empirical Economics, Springer, vol. 52(1), pages 373-392, February.
    5. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2011. "Local and Global Rank Tests for Multivariate Varying-Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 295-306.
    6. Geng, Xin & Sun, Kai, 2019. "Gradient estimation of the local-constant semiparametric smooth coefficient model," Economics Letters, Elsevier, vol. 185(C).
    7. Zhang, Wenyang & Li, Degui & Xia, Yingcun, 2015. "Estimation in generalised varying-coefficient models with unspecified link functions," Journal of Econometrics, Elsevier, vol. 187(1), pages 238-255.
    8. Nguyen Van, Phu & Azomahou, Theophile, 2007. "Nonlinearities and heterogeneity in environmental quality: An empirical analysis of deforestation," Journal of Development Economics, Elsevier, vol. 84(1), pages 291-309, September.
    9. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    10. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    11. Pantelis Kalaitzidakis. & Theofanis P. Mamuneas. & Thanasis Stengos., 2008. "The Contribution of Greenhouse Pollution to Productivity Growth," Working Papers 0802, University of Guelph, Department of Economics and Finance.
    12. Otsu, Taisuke, 2007. "Penalized empirical likelihood estimation of semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1923-1954, November.
    13. Zhou, Xian & You, Jinhong, 2004. "Wavelet estimation in varying-coefficient partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 91-104, June.
    14. Subal C. Kumbhakar, 2017. "Do urbanization and public expenditure affect productivity growth? The case of Chinese Provinces," Indian Economic Review, Springer, vol. 52(1), pages 127-156, December.
    15. T. Stengos & E. Zacharias, 2006. "Intertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 371-386, April.
    16. Valentina Hartarska & Christopher F. Parmeter & Denis Nadolnyak & Beibei Zhu, 2010. "Economies Of Scope For Microfinance: Differences Across Output Measures," Pacific Economic Review, Wiley Blackwell, vol. 15(4), pages 464-481, October.
    17. Polemis, Michael L. & Stengos, Thanasis, 2015. "Does market structure affect labour productivity and wages? Evidence from a smooth coefficient semiparametric panel model," Economics Letters, Elsevier, vol. 137(C), pages 182-186.
    18. Sophocles N. Brissimis & Manthos D. Delis & Maria Iosifidi, 2014. "Bank Market Power and Monetary Policy Transmission," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 173-214, December.
    19. Chuanhua Wei & Lijie Wan, 2015. "Efficient Estimation in Heteroscedastic Varying Coefficient Models," Econometrics, MDPI, vol. 3(3), pages 1-7, July.
    20. Cai, Zongwu & Li, Qi, 2008. "Nonparametric Estimation Of Varying Coefficient Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1321-1342, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:4:p:412-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.