IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i5d10.1007_s10260-024-00761-1.html
   My bibliography  Save this article

Comparing fundraising campaigns in healthcare using psychophysiological data: a network-based approach

Author

Listed:
  • Spyros Balafas

    (Universita Vita–Salute San Raffaele
    University of Groningen)

  • Clelia Serio

    (Universita Vita–Salute San Raffaele)

  • Riccardo Lolatto

    (IRCCS San Raffaele Scientific Institute)

  • Marco Mandolfo

    (Politecnico di Milano)

  • Anna Maria Bianchi

    (Politecnico di Milano)

  • Ernst Wit

    (Università della Svizzera italiana)

  • Chiara Brombin

    (Universita Vita–Salute San Raffaele)

Abstract

Measuring the effectiveness of fundraising campaigns is crucial for improving communication strategies. This is particularly pertinent for healthcare campaigns aimed at raising awareness about sensitive health issues that require financial support for advancing research efforts. The present work assesses campaign effectiveness by examining brain activation evoked by different video stimuli. Within a multivariate statistical setting, we compare the physiological responses that are induced by four fundraising campaigns designed under different communication strategies. Specifically, we model attention-related electroencephalographic (EEG) signals using graphical models to estimate partial correlation networks associated with each video campaign. These networks are then compared in terms of structure and connectivity using resampling methods. The proposed approach is flexible, allowing for the analysis of induced physiological responses at both local and global levels. It accounts for the interrelationships among collected EEG data and participants’ heterogeneity, overcoming the need to derive composite scores as is commonly done in neuromarketing research areas. The networks derived from different campaigns exhibit significantly different structures and connectivity, indicating distinct cognitive and emotional responses induced by the videos. Given its generality, our proposed approach can be applied effectively in psychological and neuroscientific research fields whenever the physiological response to affective stimuli is of interest. Graphical abstract

Suggested Citation

  • Spyros Balafas & Clelia Serio & Riccardo Lolatto & Marco Mandolfo & Anna Maria Bianchi & Ernst Wit & Chiara Brombin, 2024. "Comparing fundraising campaigns in healthcare using psychophysiological data: a network-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(5), pages 1403-1427, November.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:5:d:10.1007_s10260-024-00761-1
    DOI: 10.1007/s10260-024-00761-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-024-00761-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-024-00761-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    2. Bing Li & Eftychia Solea, 2018. "A Nonparametric Graphical Model for Functional Data With Application to Brain Networks Based on fMRI," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1637-1655, October.
    3. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    4. Xinghao Qiao & Shaojun Guo & Gareth M. James, 2019. "Functional Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 211-222, January.
    5. Eftychia Solea & Bing Li, 2022. "Copula Gaussian Graphical Models for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 781-793, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petersen, Alexander, 2024. "Mean and covariance estimation for discretely observed high-dimensional functional data: Rates of convergence and division of observational regimes," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
    2. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    3. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    4. Kuang‐Yao Lee & Lexin Li, 2022. "Functional structural equation model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 600-629, April.
    5. Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Ruonan Li & Luo Xiao, 2023. "Latent factor model for multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3307-3318, December.
    7. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    8. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    9. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Iñaki Galán & Lorena Simón & Elena Boldo & Cristina Ortiz & Rafael Fernández-Cuenca & Cristina Linares & María José Medrano & Roberto Pastor-Barriuso, 2017. "Changes in hospitalizations for chronic respiratory diseases after two successive smoking bans in Spain," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    11. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    12. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    13. Kramlinger, Peter & Schneider, Ulrike & Krivobokova, Tatyana, 2023. "Uniformly valid inference based on the Lasso in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    14. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    15. Paolo Veneri, 2018. "Urban spatial structure in OECD cities: Is urban population decentralising or clustering?," Papers in Regional Science, Wiley Blackwell, vol. 97(4), pages 1355-1374, November.
    16. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
    17. Schwemmer, Philipp & Güpner, Franziska & Adler, Sven & Klingbeil, Knut & Garthe, Stefan, 2016. "Modelling small-scale foraging habitat use in breeding Eurasian oystercatchers (Haematopus ostralegus) in relation to prey distribution and environmental predictors," Ecological Modelling, Elsevier, vol. 320(C), pages 322-333.
    18. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    19. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    20. Damien Rousselière, 2019. "A Flexible Approach to Age Dependence in Organizational Mortality: Comparing the Life Duration for Cooperative and Non-Cooperative Enterprises Using a Bayesian Generalized Additive Discrete Time Survi," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 829-855, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:5:d:10.1007_s10260-024-00761-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.