IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i538p781-793.html
   My bibliography  Save this article

Copula Gaussian Graphical Models for Functional Data

Author

Listed:
  • Eftychia Solea
  • Bing Li

Abstract

We introduce a statistical graphical model for multivariate functional data, which are common in medical applications such as EEG and fMRI. Recently published functional graphical models rely on the multivariate Gaussian process assumption, but we relax it by introducing the functional copula Gaussian graphical model (FCGGM). This model removes the marginal Gaussian assumption but retains the simplicity of the Gaussian dependence structure, which is particularly attractive for large data. We develop four estimators for the FCGGM and establish the consistency and the convergence rates of one of them. We compare our FCGGM with the existing functional Gaussian graphical model by simulations, and apply our method to an EEG dataset to construct brain networks. Supplementary materials for this article are available online.

Suggested Citation

  • Eftychia Solea & Bing Li, 2022. "Copula Gaussian Graphical Models for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 781-793, April.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:781-793
    DOI: 10.1080/01621459.2020.1817750
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1817750
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1817750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    2. Ruonan Li & Luo Xiao, 2023. "Latent factor model for multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3307-3318, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:781-793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.