IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v29y2020i4d10.1007_s10260-020-00507-9.html
   My bibliography  Save this article

A copula-based method of classifying individuals into binary disease categories using dependent biomarkers

Author

Listed:
  • Shofiqul Islam

    (McMaster University
    McMaster University)

  • Sonia Anand

    (McMaster University
    Hamilton Health Sciences
    McMaster University)

  • Jemila Hamid

    (McMaster University)

  • Lehana Thabane

    (McMaster University
    McMaster University)

  • Joseph Beyene

    (McMaster University)

Abstract

Classification of a disease often depends on more than one test, and the tests can be interrelated. Under the incorrect assumption of independence, the test result using dependent biomarkers can lead to a conflicting disease classification. We develop a copula-based method for this purpose that takes dependency into account and leads to a unique decision. We first construct the joint probability distribution of the biomarkers considering Frank’s, Clayton’s and Gumbel’s copulas. We then develop the classification method and perform a comprehensive simulation. Using simulated data sets, we study the statistical properties of joint probability distributions and determine the joint threshold with maximum classification accuracy. Our simulation study results show that parameter estimates for the copula-based bivariate distributions are not biased. We observe that the thresholds for disease classification converge to a stationary distribution across different choices of copulas. We also observe that the classification accuracy decreases with the increasing value of the dependence parameter of the copulas. Finally, we illustrate our method with a real data example, where we identify the joint threshold of Apolipoprotein B to Apolipoprotein A1 ratio and total cholesterol to high-density lipoprotein ratio for the classification of myocardial infarction. We conclude, the copula-based method works well in identifying the joint threshold of two dependent biomarkers for an outcome classification. Our method is flexible and allows modeling broad classes of bivariate distributions that take dependency into account. The threshold may allow clinicians to classify uniquely individuals at risk of developing the disease and plan for early intervention.

Suggested Citation

  • Shofiqul Islam & Sonia Anand & Jemila Hamid & Lehana Thabane & Joseph Beyene, 2020. "A copula-based method of classifying individuals into binary disease categories using dependent biomarkers," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 871-897, December.
  • Handle: RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-020-00507-9
    DOI: 10.1007/s10260-020-00507-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00507-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00507-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    2. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    3. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    4. Hofert, Marius & Maechler, Martin, 2011. "Nested Archimedean Copulas Meet R: The nacopula Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i09).
    5. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    6. Kojadinovic, Ivan & Yan, Jun, 2010. "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cole, Matthew A. & Elliott, Robert J.R. & Occhiali, Giovanni & Strobl, Eric, 2018. "Power outages and firm performance in Sub-Saharan Africa," Journal of Development Economics, Elsevier, vol. 134(C), pages 150-159.
    2. Dongdong Li & X. Joan Hu & Mary L. McBride & John J. Spinelli, 2020. "Multiple event times in the presence of informative censoring: modeling and analysis by copulas," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 573-602, July.
    3. Zhu, Junyi & Steiner, Viktor, 2020. "A Joint Top Income and Wealth Distribution," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224651, Verein für Socialpolitik / German Economic Association.
    4. Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    5. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
    6. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    7. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    8. Ge, Yan & Cai, Ximing & Zhu, Tingju & Ringler, Claudia, 2016. "Drought frequency change: An assessment in northern India plains," Agricultural Water Management, Elsevier, vol. 176(C), pages 111-121.
    9. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    10. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    11. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    12. repec:hum:wpaper:sfb649dp2012-036 is not listed on IDEAS
    13. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence and asymmetric responses between coffee varieties," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 17(2), June.
    14. Steiner, Viktor & Zhu, Junyi, 2021. "A joint top income and wealth distribution," Discussion Papers 2021/3, Free University Berlin, School of Business & Economics.
    15. Mangold, Benedikt, 2017. "A multivariate rank test of independence based on a multiparametric polynomial copula," FAU Discussion Papers in Economics 10/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2017.
    16. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
    17. Göran Kauermann & Renate Meyer, 2014. "Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas," Computational Statistics, Springer, vol. 29(1), pages 283-306, February.
    18. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    19. Shouji Fujimoto & Atushi Ishikawa & Takayuki Mizuno, 2022. "Copula-Based Synthetic Data Generation in Firm-Size Variables," The Review of Socionetwork Strategies, Springer, vol. 16(2), pages 479-492, October.
    20. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence between coffee qualities: a copula model to evaluate asymmetric responses," MPRA Paper 75994, University Library of Munich, Germany.
    21. S. Mandal & J. Qin & R.M. Pfeiffer, 2023. "Non‐parametric estimation of the age‐at‐onset distribution from a cross‐sectional sample," Biometrics, The International Biometric Society, vol. 79(3), pages 1701-1712, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-020-00507-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.