IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v27y2018i1d10.1007_s10260-017-0389-8.html
   My bibliography  Save this article

Effect of autocorrelation when estimating the trend of a time series via penalized least squares with controlled smoothness

Author

Listed:
  • Víctor M. Guerrero

    (ITAM)

  • Daniela Cortés Toto

    (Universidad de las Américas Puebla)

  • Hortensia J. Reyes Cervantes

    (Benemérita Universidad Autónoma de Puebla.)

Abstract

This paper studies the effect of autocorrelation on the smoothness of the trend of a univariate time series estimated by means of penalized least squares. An index of smoothness is deduced for the case of a time series represented by a signal-plus-noise model, where the noise follows an autoregressive process of order one. This index is useful for measuring the distortion of the amount of smoothness by incorporating the effect of autocorrelation. Different autocorrelation values are used to appreciate the numerical effect on smoothness for estimated trends of time series with different sample sizes. For comparative purposes, several graphs of two simulated time series are presented, where the estimated trend is compared with and without autocorrelation in the noise. Some findings are as follows, on the one hand, when the autocorrelation is negative (no matter how large) or positive but small, the estimated trend gets very close to the true trend. Even in this case, the estimation is improved by fixing the index of smoothness according to the sample size. On the other hand, when the autocorrelation is positive and large the simulated and estimated trends lie far away from the true trend. This situation is mitigated by fixing an appropriate index of smoothness for the estimated trend in accordance to the sample size at hand. Finally, an empirical example serves to illustrate the use of the smoothness index when estimating the trend of Mexico’s quarterly GDP.

Suggested Citation

  • Víctor M. Guerrero & Daniela Cortés Toto & Hortensia J. Reyes Cervantes, 2018. "Effect of autocorrelation when estimating the trend of a time series via penalized least squares with controlled smoothness," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 109-130, March.
  • Handle: RePEc:spr:stmapp:v:27:y:2018:i:1:d:10.1007_s10260-017-0389-8
    DOI: 10.1007/s10260-017-0389-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-017-0389-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-017-0389-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krivobokova, Tatyana & Kauermann, Goran, 2007. "A Note on Penalized Spline Smoothing With Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1328-1337, December.
    2. Victor M. Guerrero, 2008. "Estimating Trends with Percentage of Smoothness Chosen by the User," International Statistical Review, International Statistical Institute, vol. 76(2), pages 187-202, August.
    3. Proietti, Tommaso, 2007. "Signal extraction and filtering by linear semiparametric methods," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 935-958, October.
    4. Guerrero, Victor M., 2007. "Time series smoothing by penalized least squares," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1225-1234, July.
    5. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bloechl, Andreas, 2014. "Penalized Splines, Mixed Models and the Wiener-Kolmogorov Filter," Discussion Papers in Economics 21406, University of Munich, Department of Economics.
    2. Blöchl, Andreas, 2014. "Penalized Splines as Frequency Selective Filters - Reducing the Excess Variability at the Margins," Discussion Papers in Economics 20687, University of Munich, Department of Economics.
    3. Víctor M. Guerrero & Adriana Galicia‐Vázquez, 2010. "Trend estimation of financial time series," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 205-223, May.
    4. Eliud Silva & Víctor M. Guerrero, 2017. "Penalized least squares smoothing of two-dimensional mortality tables with imposed smoothness," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1662-1679, July.
    5. A. ISLAS & Víctor M. GUERRERO & Eliud SILVA, 2019. "Forecasting Remittances to Mexico with a Multi-State Markov-Switching Model Applied to the Trend with Controlled Smoothness," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 38-56, March.
    6. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    7. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    8. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    9. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    10. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    11. Karimu, Amin & Brännlund, Runar, 2013. "Functional form and aggregate energy demand elasticities: A nonparametric panel approach for 17 OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 19-27.
    12. Blöchl, Andreas, 2014. "Trend Estimation with Penalized Splines as Mixed Models for Series with Structural Breaks," Discussion Papers in Economics 18446, University of Munich, Department of Economics.
    13. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    14. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    15. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    16. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    17. Maria Sassi, 2010. "OLS and GWR Approaches to Agricultural Convergence in the EU-15," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 16(1), pages 96-108, February.
    18. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    19. Arturo Bujanda & Thomas M. Fullerton, 2017. "Impacts of transportation infrastructure on single-family property values," Applied Economics, Taylor & Francis Journals, vol. 49(51), pages 5183-5199, November.
    20. Costas Milas & Ruthira Naraidoo, 2009. "Financial Market Conditions, Real Time, Nonlinearity and European Central Bank Monetary Policy: In-Sample and Out-of-Sample Assessment," Working Papers 200923, University of Pretoria, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:27:y:2018:i:1:d:10.1007_s10260-017-0389-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.