Comments on: model-based clustering and classification with non-normal mixture distributions
Author
Abstract
Suggested Citation
DOI: 10.1007/s10260-013-0245-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2013. "A fast algorithm for robust constrained clustering," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 124-136.
- Ingrassia, Salvatore & Rocci, Roberto, 2007. "Constrained monotone EM algorithms for finite mixture of multivariate Gaussians," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5339-5351, July.
- Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2014. "A constrained robust proposal for mixture modeling avoiding spurious solutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 27-43, March.
- García-Escudero, Luis Angel & Gordaliza, Alfonso & Greselin, Francesca & Ingrassia, Salvatore & Mayo-Iscar, Agustín, 2016. "The joint role of trimming and constraints in robust estimation for mixtures of Gaussian factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 131-147.
- Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
- Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
- Andrea Cappozzo & Francesca Greselin & Thomas Brendan Murphy, 2020. "A robust approach to model-based classification based on trimming and constraints," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 327-354, June.
- Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
- Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
- Francesca Torti & Domenico Perrotta & Marco Riani & Andrea Cerioli, 2019. "Assessing trimming methodologies for clustering linear regression data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 227-257, March.
- Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
- Cong, Lin & Yao, Weixin, 2021. "A Likelihood Ratio Test of a Homoscedastic Multivariate Normal Mixture Against a Heteroscedastic Multivariate Normal Mixture," Econometrics and Statistics, Elsevier, vol. 18(C), pages 79-88.
- Luca Greco & Antonio Lucadamo & Claudio Agostinelli, 2021. "Weighted likelihood latent class linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 711-746, June.
- Luis Angel García-Escudero & Alfonso Gordaliza & Francesca Greselin & Salvatore Ingrassia & Agustín Mayo-Iscar, 2018. "Eigenvalues and constraints in mixture modeling: geometric and computational issues," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 203-233, June.
- Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2013. "A fast algorithm for robust constrained clustering," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 124-136.
- Xu Gao & Weining Shen & Liwen Zhang & Jianhua Hu & Norbert J. Fortin & Ron D. Frostig & Hernando Ombao, 2021. "Regularized matrix data clustering and its application to image analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 890-902, September.
- Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
- Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2023.
"Automatic robust Box–Cox and extended Yeo–Johnson transformations in regression,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 75-102, March.
- Riani, Marco & Atkinson, Anthony C. & Corbellini, Aldo, 2023. "Automatic robust Box-Cox and extended Yeo-Johnson transformations in regression," LSE Research Online Documents on Economics 114903, London School of Economics and Political Science, LSE Library.
- A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
- Fortini Marco, 2020. "An Improved Fellegi-Sunter Framework for Probabilistic Record Linkage Between Large Data Sets," Journal of Official Statistics, Sciendo, vol. 36(4), pages 803-825, December.
- Pietro Coretto & Christian Hennig, 2010. "A simulation study to compare robust clustering methods based on mixtures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 111-135, September.
- Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:22:y:2013:i:4:p:459-461. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.