Constrained monotone EM algorithms for finite mixture of multivariate Gaussians
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Biernacki, Christophe & Chrétien, Stéphane, 2003. "Degeneracy in the maximum likelihood estimation of univariate Gaussian mixtures with EM," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 373-382, February.
- Salvatore Ingrassia, 2004. "A likelihood-based constrained algorithm for multivariate normal mixture models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(2), pages 151-166, September.
- Gabriela Ciuperca & Andrea Ridolfi & Jérôme Idier, 2003. "Penalized Maximum Likelihood Estimator for Normal Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 45-59, March.
- Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
- Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.
- Luis Angel García-Escudero & Alfonso Gordaliza & Francesca Greselin & Salvatore Ingrassia & Agustín Mayo-Iscar, 2018. "Eigenvalues and constraints in mixture modeling: geometric and computational issues," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 203-233, June.
- Seo, Byungtae & Kim, Daeyoung, 2012. "Root selection in normal mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2454-2470.
- Andrews, Jeffrey L., 2018. "Addressing overfitting and underfitting in Gaussian model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 160-171.
- Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
- Tin Lok James Ng & Thomas Brendan Murphy, 2021. "Model-based Clustering of Count Processes," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 188-211, July.
- Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
- Maddalena Cavicchioli, 2016. "Statistical Analysis Of Mixture Vector Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1192-1213, December.
- Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
- Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
- Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
- Anthony C. Atkinson & Marco Riani & Andrea Cerioli, 2018.
"Cluster detection and clustering with random start forward searches,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 777-798, April.
- Atkinson, Anthony C. & Riani, Marco & Cerioli, Andrea, 2017. "Cluster detection and clustering with random start forward searches," LSE Research Online Documents on Economics 72291, London School of Economics and Political Science, LSE Library.
- Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
- Di Zio, Marco & Guarnera, Ugo & Luzi, Orietta, 2007. "Imputation through finite Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5305-5316, July.
- Sylvia Frühwirth‐Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter‐Ebmer, 2012.
"Labor market entry and earnings dynamics: Bayesian inference using mixtures‐of‐experts Markov chain clustering,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1116-1137, November.
- Sylvia Frühwirth-Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter-Ebmer, 2010. "Labor Market Entry and Earnings Dynamics: Bayesian Inference Using Mixtures-of-Experts Markov Chain Clustering," NRN working papers 2010-14, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
- Sylvia Frühwirth-Schnatter & Andrea Weber & Rudolf Winter-Ebmer, 2010. "Labor Market Entry and Earnings Dynamics: Bayesian Inference Using Mixtures-of-Experts Markov Chain Clustering," Economics working papers 2010-11, Department of Economics, Johannes Kepler University Linz, Austria.
- Montanari, Angela & Viroli, Cinzia, 2011. "Maximum likelihood estimation of mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2712-2723, September.
- Giovanna Devetag & Sibilla Guida & Luca Polonio, 2016.
"An eye-tracking study of feature-based choice in one-shot games,"
Experimental Economics, Springer;Economic Science Association, vol. 19(1), pages 177-201, March.
- Giovanna Devetag & Sibilla Di Guida & Luca Polonio, 2013. "An eye-tracking study of feature-based choice in one-shot games," LEM Papers Series 2013/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Giovanna Devetag & Sibilla Di Guida & Luca Polonio, 2016. "An eye-tracking study of feature-based choice in one-shot games," ULB Institutional Repository 2013/232013, ULB -- Universite Libre de Bruxelles.
- Giovanna Devetag & Sibilla Di Guida & Luca Polonio, 2013. "An Eye-Tracking Study of Feature-Based Choice in One-Shot Games," Working Papers ECARES ECARES 2013-06, ULB -- Universite Libre de Bruxelles.
- Giovanna Devetag & Sibilla Di Guida & Luca Polonio, 2013. "An eye-tracking study of feature-based choice in one-shot games," CEEL Working Papers 1301, Cognitive and Experimental Economics Laboratory, Department of Economics, University of Trento, Italia.
- Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
- Wu, Han-Ming, 2011. "On biological validity indices for soft clustering algorithms for gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1969-1979, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:11:p:5339-5351. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.