IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v19y2010i3p431-444.html
   My bibliography  Save this article

A multiple imputation approach to deal with the unity measure error

Author

Listed:
  • Marco Di Zio
  • Ugo Guarnera

Abstract

No abstract is available for this item.

Suggested Citation

  • Marco Di Zio & Ugo Guarnera, 2010. "A multiple imputation approach to deal with the unity measure error," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 431-444, August.
  • Handle: RePEc:spr:stmapp:v:19:y:2010:i:3:p:431-444
    DOI: 10.1007/s10260-010-0132-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-010-0132-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-010-0132-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Zio, Marco & Guarnera, Ugo & Rocci, Roberto, 2007. "A mixture of mixture models for a classification problem: The unity measure error," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2573-2585, February.
    2. Ghosh-Dastidar B. & Schafer J.L., 2003. "Multiple Edit/Multiple Imputation for Multivariate Continuous Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 807-817, January.
    3. Marco Di Zio & Ugo Guarnera, 2008. "A multiple imputation method for non-Gaussian data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 75-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    2. Monica Pratesi & Claudio Ceccarelli & Stefano Menghinello, 2021. "Citizen-Generated Data and Official Statistics: an application to SDG indicators," Discussion Papers 2021/274, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    3. Alessio Farcomeni & Antonio Punzo, 2020. "Robust model-based clustering with mild and gross outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 989-1007, December.
    4. Marco Di Zio & Ugo Guarnera, 2008. "A multiple imputation method for non-Gaussian data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 75-90.
    5. Di Mari, Roberto & Bakk, Zsuzsa & Oser, Jennifer & Kuha, Jouni, 2023. "A two-step estimator for multilevel latent class analysis with covariates," LSE Research Online Documents on Economics 119994, London School of Economics and Political Science, LSE Library.
    6. Shuchismita Sarkar & Volodymyr Melnykov & Rong Zheng, 2020. "Gaussian mixture modeling and model-based clustering under measurement inconsistency," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 379-413, June.
    7. Amovin-Assagba, Martial & Gannaz, Irène & Jacques, Julien, 2022. "Outlier detection in multivariate functional data through a contaminated mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:19:y:2010:i:3:p:431-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.