Robust model-based clustering with mild and gross outliers
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-019-00693-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
- Di Zio, Marco & Guarnera, Ugo & Rocci, Roberto, 2007. "A mixture of mixture models for a classification problem: The unity measure error," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2573-2585, February.
- repec:bla:biomet:v:71:y:2015:i:4:p:1081-1089 is not listed on IDEAS
- Alessio Farcomeni & Francesco Dotto, 2018. "The power of (extended) monitoring in robust clustering," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 651-660, December.
- Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
- Cabral, Celso Rômulo Barbosa & Lachos, Víctor Hugo & Prates, Marcos O., 2012. "Multivariate mixture modeling using skew-normal independent distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 126-142, January.
- C. Ruwet & L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2013. "On the breakdown behavior of the TCLUST clustering procedure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 466-487, September.
- Anthony C. Atkinson & Marco Riani & Andrea Cerioli, 2018.
"Cluster detection and clustering with random start forward searches,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 777-798, April.
- Atkinson, Anthony C. & Riani, Marco & Cerioli, Andrea, 2017. "Cluster detection and clustering with random start forward searches," LSE Research Online Documents on Economics 72291, London School of Economics and Political Science, LSE Library.
- Alessio Farcomeni, 2007. "Some Results on the Control of the False Discovery Rate under Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 275-297, June.
- Andrea Cerioli & Alessio Farcomeni & Marco Riani, 2019. "Wild adaptive trimming for robust estimation and cluster analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(1), pages 235-256, March.
- Cerioli, Andrea, 2010. "Multivariate Outlier Detection With High-Breakdown Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 147-156.
- Andrea Cerioli & Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2018. "The power of monitoring: how to make the most of a contaminated multivariate sample," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 559-587, December.
- Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
- Jian Zhang & Faming Liang, 2010. "Robust Clustering Using Exponential Power Mixtures," Biometrics, The International Biometric Society, vol. 66(4), pages 1078-1086, December.
- Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
- Alessio Farcomeni, 2009. "Robust Double Clustering: A Method Based on Alternating Concentration Steps," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 77-101, April.
- Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
- Peter Bryant, 1991. "Large-sample results for optimization-based clustering methods," Journal of Classification, Springer;The Classification Society, vol. 8(1), pages 31-44, January.
- Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sugasawa, Shonosuke & Kobayashi, Genya, 2022. "Robust fitting of mixture models using weighted complete estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Salvatore D. Tomarchio & Luca Bagnato & Antonio Punzo, 2022. "Model-based clustering via new parsimonious mixtures of heavy-tailed distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 315-347, June.
- Pietro Coretto, 2022. "Estimation and computations for Gaussian mixtures with uniform noise under separation constraints," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 427-458, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
- Ryan P. Browne & Luca Bagnato & Antonio Punzo, 2024. "Parsimony and parameter estimation for mixtures of multivariate leptokurtic-normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 597-625, September.
- Yang, Yu-Chen & Lin, Tsung-I & Castro, Luis M. & Wang, Wan-Lun, 2020. "Extending finite mixtures of t linear mixed-effects models with concomitant covariates," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
- Šárka Brodinová & Peter Filzmoser & Thomas Ortner & Christian Breiteneder & Maia Rohm, 2019. "Robust and sparse k-means clustering for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 905-932, December.
- Sugasawa, Shonosuke & Kobayashi, Genya, 2022. "Robust fitting of mixture models using weighted complete estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
- Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
- Reiko Aoki & Juan P. M. Bustamante & Gilberto A. Paula, 2022. "Local influence diagnostics with forward search in regression analysis," Statistical Papers, Springer, vol. 63(5), pages 1477-1497, October.
- Brenton R. Clarke & Andrew Grose, 2023. "A further study comparing forward search multivariate outlier methods including ATLA with an application to clustering," Statistical Papers, Springer, vol. 64(2), pages 395-420, April.
- Carmela Iorio & Gianluca Frasso & Antonio D’Ambrosio & Roberta Siciliano, 2023. "Boosted-oriented probabilistic smoothing-spline clustering of series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1123-1140, October.
- Marco Riani & Anthony C. Atkinson & Andrea Cerioli & Aldo Corbellini, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 349-352, June.
- Naderi, Mehrdad & Mirfarah, Elham & Wang, Wan-Lun & Lin, Tsung-I, 2023. "Robust mixture regression modeling based on the normal mean-variance mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
- Ricardo Fraiman & Badih Ghattas & Marcela Svarc, 2013. "Interpretable clustering using unsupervised binary trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(2), pages 125-145, June.
- Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
- Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
- Yana Melnykov & Xuwen Zhu & Volodymyr Melnykov, 2021. "Transformation mixture modeling for skewed data groups with heavy tails and scatter," Computational Statistics, Springer, vol. 36(1), pages 61-78, March.
- Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
- Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
More about this item
Keywords
tclust; Contaminated normal; Penalized likelihood;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:29:y:2020:i:4:d:10.1007_s11749-019-00693-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.