IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v9y2017i1d10.1007_s12561-016-9148-x.html
   My bibliography  Save this article

A Model-Based Approach for Species Abundance Quantification Based on Shotgun Metagenomic Data

Author

Listed:
  • Eric Z. Chen

    (University of Pennsylvania School of Medicine)

  • Frederic D. Bushman

    (University of Pennsylvania School of Medicine)

  • Hongzhe Li

    (University of Pennsylvania School of Medicine)

Abstract

The human microbiome, which includes the collective microbes residing in or on the human body, has a profound influence on the human health. DNA sequencing technology has made the large-scale human microbiome studies possible by using shotgun metagenomic sequencing. One important aspect of data analysis of such metagenomic data is to quantify the bacterial abundances based on the metagenomic sequencing data. Existing methods almost always quantify such abundances one sample at a time, which ignore certain systematic differences in read coverage along the genomes due to GC contents, copy number variation and the bacterial origin of replication. In order to account for such differences in read counts, we propose a multi-sample Poisson model to quantify microbial abundances based on read counts that are assigned to species-specific taxonomic markers. Our model takes into account the marker-specific effects when normalizing the sequencing count data in order to obtain more accurate quantification of the species abundances. Compared to currently available methods on simulated data and real data sets, our method has demonstrated an improved accuracy in bacterial abundance quantification, which leads to more biologically interesting results from downstream data analysis.

Suggested Citation

  • Eric Z. Chen & Frederic D. Bushman & Hongzhe Li, 2017. "A Model-Based Approach for Species Abundance Quantification Based on Shotgun Metagenomic Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 13-27, June.
  • Handle: RePEc:spr:stabio:v:9:y:2017:i:1:d:10.1007_s12561-016-9148-x
    DOI: 10.1007/s12561-016-9148-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-016-9148-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-016-9148-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Turnbaugh & Ruth E. Ley & Micah Hamady & Claire M. Fraser-Liggett & Rob Knight & Jeffrey I. Gordon, 2007. "The Human Microbiome Project," Nature, Nature, vol. 449(7164), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    2. Jae-Chang Cho, 2021. "Human microbiome privacy risks associated with summary statistics," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-11, April.
    3. Pirjo Wacklin & Harri Mäkivuokko & Noora Alakulppi & Janne Nikkilä & Heli Tenkanen & Jarkko Räbinä & Jukka Partanen & Kari Aranko & Jaana Mättö, 2011. "Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    4. Disha Tandon & Mohammed Monzoorul Haque & Sharmila S Mande, 2016. "Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-16, April.
    5. Ran Li & Yongming Wang & Han Hu & Yan Tan & Yingfei Ma, 2022. "Metagenomic analysis reveals unexplored diversity of archaeal virome in the human gut," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Margaret Coleman & Christopher Elkins & Bradford Gutting & Emmanuel Mongodin & Gloria Solano‐Aguilar & Isabel Walls, 2018. "Microbiota and Dose Response: Evolving Paradigm of Health Triangle," Risk Analysis, John Wiley & Sons, vol. 38(10), pages 2013-2028, October.
    8. Liangliang Zhang & Yushu Shi & Robert R. Jenq & Kim‐Anh Do & Christine B. Peterson, 2021. "Bayesian compositional regression with structured priors for microbiome feature selection," Biometrics, The International Biometric Society, vol. 77(3), pages 824-838, September.
    9. Sarah L Hagerty & Kent E Hutchison & Christopher A Lowry & Angela D Bryan, 2020. "An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    10. Eman M Fouda, 2017. "Airway Microbiota and Allergic Diseases: Clinical Implications," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(5), pages 1-5, May.
    11. Kumar P Mainali & Sharon Bewick & Peter Thielen & Thomas Mehoke & Florian P Breitwieser & Shishir Paudel & Arjun Adhikari & Joshua Wolfe & Eric V Slud & David Karig & William F Fagan, 2017. "Statistical analysis of co-occurrence patterns in microbial presence-absence datasets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-21, November.
    12. Yunjia Lai & Chih-Wei Liu & Yifei Yang & Yun-Chung Hsiao & Hongyu Ru & Kun Lu, 2021. "High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    13. Amirhossein Shamsaddini & Kimia Dadkhah & Patrick M Gillevet, 2020. "BiomMiner: An advanced exploratory microbiome analysis and visualization pipeline," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    14. Ruiz-Moreno, Héctor Alejandro & López-Tamayo, Ana María & Caro-Quintero, Alejandro & Husserl, Johana & González Barrios, Andrés Fernando, 2019. "Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water," Ecological Modelling, Elsevier, vol. 399(C), pages 1-12.
    15. Li, Jie & Shen, Xuzhu & Li, YaoTang, 2021. "Modeling the temporal dynamics of gut microbiota from a local community perspective," Ecological Modelling, Elsevier, vol. 460(C).
    16. Gregor Gorkiewicz & Gerhard G Thallinger & Slave Trajanoski & Stefan Lackner & Gernot Stocker & Thomas Hinterleitner & Christian Gülly & Christoph Högenauer, 2013. "Alterations in the Colonic Microbiota in Response to Osmotic Diarrhea," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-17, February.
    17. Lena Takayasu & Wataru Suda & Eiichiro Watanabe & Shinji Fukuda & Kageyasu Takanashi & Hiroshi Ohno & Misako Takayasu & Hideki Takayasu & Masahira Hattori, 2017. "A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-20, August.
    18. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
    19. Patricio S La Rosa & Berkley Shands & Elena Deych & Yanjiao Zhou & Erica Sodergren & George Weinstock & William D Shannon, 2012. "Statistical Object Data Analysis of Taxonomic Trees from Human Microbiome Data," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-12, November.
    20. Sean M Gibbons & Sean M Kearney & Chris S Smillie & Eric J Alm, 2017. "Two dynamic regimes in the human gut microbiome," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:9:y:2017:i:1:d:10.1007_s12561-016-9148-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.