IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0048996.html
   My bibliography  Save this article

Statistical Object Data Analysis of Taxonomic Trees from Human Microbiome Data

Author

Listed:
  • Patricio S La Rosa
  • Berkley Shands
  • Elena Deych
  • Yanjiao Zhou
  • Erica Sodergren
  • George Weinstock
  • William D Shannon

Abstract

Human microbiome research characterizes the microbial content of samples from human habitats to learn how interactions between bacteria and their host might impact human health. In this work a novel parametric statistical inference method based on object-oriented data analysis (OODA) for analyzing HMP data is proposed. OODA is an emerging area of statistical inference where the goal is to apply statistical methods to objects such as functions, images, and graphs or trees. The data objects that pertain to this work are taxonomic trees of bacteria built from analysis of 16S rRNA gene sequences (e.g. using RDP); there is one such object for each biological sample analyzed. Our goal is to model and formally compare a set of trees. The contribution of our work is threefold: first, a weighted tree structure to analyze RDP data is introduced; second, using a probability measure to model a set of taxonomic trees, we introduce an approximate MLE procedure for estimating model parameters and we derive LRT statistics for comparing the distributions of two metagenomic populations; and third the Jumpstart HMP data is analyzed using the proposed model providing novel insights and future directions of analysis.

Suggested Citation

  • Patricio S La Rosa & Berkley Shands & Elena Deych & Yanjiao Zhou & Erica Sodergren & George Weinstock & William D Shannon, 2012. "Statistical Object Data Analysis of Taxonomic Trees from Human Microbiome Data," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-12, November.
  • Handle: RePEc:plo:pone00:0048996
    DOI: 10.1371/journal.pone.0048996
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048996
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0048996&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0048996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James Robert White & Niranjan Nagarajan & Mihai Pop, 2009. "Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-11, April.
    2. Peter J. Turnbaugh & Ruth E. Ley & Micah Hamady & Claire M. Fraser-Liggett & Rob Knight & Jeffrey I. Gordon, 2007. "The Human Microbiome Project," Nature, Nature, vol. 449(7164), pages 804-810, October.
    3. David Banks & Kathleen Carley, 1994. "Metric inference for social networks," Journal of Classification, Springer;The Classification Society, vol. 11(1), pages 121-149, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    2. Zhenqiu Liu & Dechang Chen & Li Sheng & Amy Y Liu, 2013. "Class Prediction and Feature Selection with Linear Optimization for Metagenomic Count Data," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-7, March.
    3. Amirhossein Shamsaddini & Kimia Dadkhah & Patrick M Gillevet, 2020. "BiomMiner: An advanced exploratory microbiome analysis and visualization pipeline," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    4. Gregor Gorkiewicz & Gerhard G Thallinger & Slave Trajanoski & Stefan Lackner & Gernot Stocker & Thomas Hinterleitner & Christian Gülly & Christoph Högenauer, 2013. "Alterations in the Colonic Microbiota in Response to Osmotic Diarrhea," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-17, February.
    5. Pengfei Song & Wen Qin & YanGan Huang & Lei Wang & Zhenyuan Cai & Tongzuo Zhang, 2020. "Grazing Management Influences Gut Microbial Diversity of Livestock in the Same Area," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    6. Tesfatsion, Leigh, 1998. "Ex Ante Capacity Effects in Evolutionary Labor Markets with Adaptive Search," ISU General Staff Papers 199810010700001046, Iowa State University, Department of Economics.
    7. Daphna Rothschild & Erez Dekel & Jean Hausser & Anat Bren & Guy Aidelberg & Pablo Szekely & Uri Alon, 2014. "Linear Superposition and Prediction of Bacterial Promoter Activity Dynamics in Complex Conditions," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-9, May.
    8. Allison G. White & George S. Watts & Zhenqiang Lu & Maria M. Meza-Montenegro & Eric A. Lutz & Philip Harber & Jefferey L. Burgess, 2014. "Environmental Arsenic Exposure and Microbiota in Induced Sputum," IJERPH, MDPI, vol. 11(2), pages 1-15, February.
    9. Jae-Chang Cho, 2021. "Human microbiome privacy risks associated with summary statistics," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-11, April.
    10. Pirjo Wacklin & Harri Mäkivuokko & Noora Alakulppi & Janne Nikkilä & Heli Tenkanen & Jarkko Räbinä & Jukka Partanen & Kari Aranko & Jaana Mättö, 2011. "Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    11. Tesfatsion, Leigh, 1998. "Teaching Agent-Based Computational Economics to Graduate Students," ISU General Staff Papers 199807010700001043, Iowa State University, Department of Economics.
    12. Yee Sang Wong & Nicholas John Osborne, 2022. "Biodiversity Effects on Human Mental Health via Microbiota Alterations," IJERPH, MDPI, vol. 19(19), pages 1-13, September.
    13. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    14. Tesfatsion, Leigh, 1998. "Preferential Partner Selection in Evolutionary Labor Markets: A Study in Agent-Based Computational Economics," Staff General Research Papers Archive 2048, Iowa State University, Department of Economics.
    15. Disha Tandon & Mohammed Monzoorul Haque & Sharmila S Mande, 2016. "Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-16, April.
    16. Eric Z. Chen & Frederic D. Bushman & Hongzhe Li, 2017. "A Model-Based Approach for Species Abundance Quantification Based on Shotgun Metagenomic Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 13-27, June.
    17. Carter T. Butts & Kathleen M. Carley, 2005. "Some Simple Algorithms for Structural Comparison," Computational and Mathematical Organization Theory, Springer, vol. 11(4), pages 291-305, December.
    18. Tesfatsion, Leigh, 1998. "Gale-Shapley Matching in an Evolutionary Trade Network Game," ISU General Staff Papers 199804010800001041, Iowa State University, Department of Economics.
    19. Yong Li & Jiejie Zhang & Jianqiang Zhang & Wenlai Xu & Zishen Mou, 2019. "Microbial Community Structure in the Sediments and Its Relation to Environmental Factors in Eutrophicated Sancha Lake," IJERPH, MDPI, vol. 16(11), pages 1-15, May.
    20. Monica Vera-Lise Tulstrup & Ellen Gerd Christensen & Vera Carvalho & Caroline Linninge & Siv Ahrné & Ole Højberg & Tine Rask Licht & Martin Iain Bahl, 2015. "Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0048996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.