IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i10p2013-2028.html
   My bibliography  Save this article

Microbiota and Dose Response: Evolving Paradigm of Health Triangle

Author

Listed:
  • Margaret Coleman
  • Christopher Elkins
  • Bradford Gutting
  • Emmanuel Mongodin
  • Gloria Solano‐Aguilar
  • Isabel Walls

Abstract

SRA Dose‐Response and Microbial Risk Analysis Specialty Groups jointly sponsored symposia that addressed the intersections between the “microbiome revolution” and dose response. Invited speakers presented on innovations and advances in gut and nasal microbiota (normal microbial communities) in the first decade after the Human Microbiome Project began. The microbiota and their metabolites are now known to influence health and disease directly and indirectly, through modulation of innate and adaptive immune systems and barrier function. Disruption of healthy microbiota is often associated with changes in abundance and diversity of core microbial species (dysbiosis), caused by stressors including antibiotics, chemotherapy, and disease. Nucleic‐acid‐based metagenomic methods demonstrated that the dysbiotic host microbiota no longer provide normal colonization resistance to pathogens, a critical component of innate immunity of the superorganism. Diverse pathogens, probiotics, and prebiotics were considered in human and animal models (in vivo and in vitro). Discussion included approaches for design of future microbial dose–response studies to account for the presence of the indigenous microbiota that provide normal colonization resistance, and the absence of the protective microbiota in dysbiosis. As NextGen risk analysis methodology advances with the “microbiome revolution,” a proposed new framework, the Health Triangle, may replace the old paradigm based on the Disease Triangle (focused on host, pathogen, and environment) and germophobia. Collaborative experimental designs are needed for testing hypotheses about causality in dose–response relationships for pathogens present in our environments that clearly compete in complex ecosystems with thousands of bacterial species dominating the healthy superorganism.

Suggested Citation

  • Margaret Coleman & Christopher Elkins & Bradford Gutting & Emmanuel Mongodin & Gloria Solano‐Aguilar & Isabel Walls, 2018. "Microbiota and Dose Response: Evolving Paradigm of Health Triangle," Risk Analysis, John Wiley & Sons, vol. 38(10), pages 2013-2028, October.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:10:p:2013-2028
    DOI: 10.1111/risa.13121
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13121
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emma L. Snary & Arno N. Swart & Robin R. L. Simons & Ana Rita Calado Domingues & Hakan Vigre & Eric G. Evers & Tine Hald & Andrew A. Hill, 2016. "A Quantitative Microbiological Risk Assessment for Salmonella in Pigs for the European Union," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 437-449, March.
    2. Alexander Zipperer & Martin C. Konnerth & Claudia Laux & Anne Berscheid & Daniela Janek & Christopher Weidenmaier & Marc Burian & Nadine A. Schilling & Christoph Slavetinsky & Matthias Marschal & Matt, 2016. "Human commensals producing a novel antibiotic impair pathogen colonization," Nature, Nature, vol. 535(7613), pages 511-516, July.
    3. Peter J. Turnbaugh & Ruth E. Ley & Micah Hamady & Claire M. Fraser-Liggett & Rob Knight & Jeffrey I. Gordon, 2007. "The Human Microbiome Project," Nature, Nature, vol. 449(7164), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    2. Daphna Rothschild & Erez Dekel & Jean Hausser & Anat Bren & Guy Aidelberg & Pablo Szekely & Uri Alon, 2014. "Linear Superposition and Prediction of Bacterial Promoter Activity Dynamics in Complex Conditions," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-9, May.
    3. Jae-Chang Cho, 2021. "Human microbiome privacy risks associated with summary statistics," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-11, April.
    4. Pirjo Wacklin & Harri Mäkivuokko & Noora Alakulppi & Janne Nikkilä & Heli Tenkanen & Jarkko Räbinä & Jukka Partanen & Kari Aranko & Jaana Mättö, 2011. "Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    5. Yee Sang Wong & Nicholas John Osborne, 2022. "Biodiversity Effects on Human Mental Health via Microbiota Alterations," IJERPH, MDPI, vol. 19(19), pages 1-13, September.
    6. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    7. Disha Tandon & Mohammed Monzoorul Haque & Sharmila S Mande, 2016. "Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-16, April.
    8. Eric Z. Chen & Frederic D. Bushman & Hongzhe Li, 2017. "A Model-Based Approach for Species Abundance Quantification Based on Shotgun Metagenomic Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 13-27, June.
    9. Dominik Ruppelt & Marius F. W. Trollmann & Taulant Dema & Sebastian N. Wirtz & Hendrik Flegel & Sophia Mönnikes & Stephanie Grond & Rainer A. Böckmann & Claudia Steinem, 2024. "The antimicrobial fibupeptide lugdunin forms water-filled channel structures in lipid membranes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Zhenqiu Liu & Dechang Chen & Li Sheng & Amy Y Liu, 2013. "Class Prediction and Feature Selection with Linear Optimization for Metagenomic Count Data," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-7, March.
    11. Charles K Fisher & Thierry Mora & Aleksandra M Walczak, 2017. "Variable habitat conditions drive species covariation in the human microbiota," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-18, April.
    12. Bahareh Mansoorian & Emilie Combet & Areej Alkhaldy & Ada L. Garcia & Christine Ann Edwards, 2019. "Impact of Fermentable Fibres on the Colonic Microbiota Metabolism of Dietary Polyphenols Rutin and Quercetin," IJERPH, MDPI, vol. 16(2), pages 1-12, January.
    13. Ran Li & Yongming Wang & Han Hu & Yan Tan & Yingfei Ma, 2022. "Metagenomic analysis reveals unexplored diversity of archaeal virome in the human gut," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Håkan Vigre & Kristen Barfoed & Arno N. Swart & Robin R. L. Simons & Andrew A. Hill & Emma L Snary & Tine Hald, 2016. "Characterization of the Human Risk of Salmonellosis Related to Consumption of Pork Products in Different E.U. Countries Based on a QMRA," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 531-545, March.
    15. Matthew D. Koslovsky, 2023. "A Bayesian zero‐inflated Dirichlet‐multinomial regression model for multivariate compositional count data," Biometrics, The International Biometric Society, vol. 79(4), pages 3239-3251, December.
    16. Jake M. Robinson & Jacob G. Mills & Martin F. Breed, 2018. "Walking Ecosystems in Microbiome-Inspired Green Infrastructure: An Ecological Perspective on Enhancing Personal and Planetary Health," Challenges, MDPI, vol. 9(2), pages 1-15, November.
    17. Patricio S La Rosa & J Paul Brooks & Elena Deych & Edward L Boone & David J Edwards & Qin Wang & Erica Sodergren & George Weinstock & William D Shannon, 2012. "Hypothesis Testing and Power Calculations for Taxonomic-Based Human Microbiome Data," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.
    18. Xinhui Wang & Marinus J C Eijkemans & Jacco Wallinga & Giske Biesbroek & Krzysztof Trzciński & Elisabeth A M Sanders & Debby Bogaert, 2012. "Multivariate Approach for Studying Interactions between Environmental Variables and Microbial Communities," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    19. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Liangliang Zhang & Yushu Shi & Robert R. Jenq & Kim‐Anh Do & Christine B. Peterson, 2021. "Bayesian compositional regression with structured priors for microbiome feature selection," Biometrics, The International Biometric Society, vol. 77(3), pages 824-838, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:10:p:2013-2028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.