IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v63y2024i1d10.1007_s00355-024-01520-7.html
   My bibliography  Save this article

A family of condorcet domains that are single-peaked on a circle

Author

Listed:
  • Arkadii Slinko

    (The University of Auckland)

Abstract

Fishburn’s alternating scheme domains occupy a special place in the theory of Condorcet domains. Karpov (2023) generalised these domains and made an interesting observation proving that all of them are single-peaked on a circle. However, an important point that all generalised Fishburn domains are maximal Condorcet domain remained unproved. We fill this gap and suggest a new combinatorial interpretation of generalised Fishburn’s domains which provide a constructive proof of single-peakedness of these domains on a circle. We show that classical single-peaked domains and single-dipped domains as well as Fishburn’s alternating scheme domains belong to this family of domains while single-crossing domains do not.

Suggested Citation

  • Arkadii Slinko, 2024. "A family of condorcet domains that are single-peaked on a circle," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 63(1), pages 57-67, August.
  • Handle: RePEc:spr:sochwe:v:63:y:2024:i:1:d:10.1007_s00355-024-01520-7
    DOI: 10.1007/s00355-024-01520-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00355-024-01520-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00355-024-01520-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puppe, Clemens, 2018. "The single-peaked domain revisited: A simple global characterization," Journal of Economic Theory, Elsevier, vol. 176(C), pages 55-80.
    2. Ádám Galambos & Victor Reiner, 2008. "Acyclic sets of linear orders via the Bruhat orders," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(2), pages 245-264, February.
    3. Peter Fishburn, 1996. "Acyclic sets of linear orders," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(1), pages 113-124.
    4. Alexander Karpov, 2023. "Preferences over Mixed Manna," Springer Optimization and Its Applications, in: Boris Goldengorin & Sergei Kuznetsov (ed.), Data Analysis and Optimization, pages 169-178, Springer.
    5. Slinko, Arkadii & Wu, Qinggong & Wu, Xingye, 2021. "A characterization of preference domains that are single-crossing and maximal Condorcet," Economics Letters, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puppe, Clemens & Slinko, Arkadii, 2024. "Maximal Condorcet domains. A further progress report," Games and Economic Behavior, Elsevier, vol. 145(C), pages 426-450.
    2. Li, Guanhao & Puppe, Clemens & Slinko, Arkadii, 2021. "Towards a classification of maximal peak-pit Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 191-202.
    3. Alexander Karpov & Arkadii Slinko, 2023. "Constructing large peak-pit Condorcet domains," Theory and Decision, Springer, vol. 94(1), pages 97-120, January.
    4. Li, Guanhao & Puppe, Clemens & Slinko, Arkadii, 2020. "Towards a classification of maximal peak-pit Condorcet domains," Working Paper Series in Economics 144, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    5. Li, Guanhao, 2023. "A classification of peak-pit maximal Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 125(C), pages 42-57.
    6. Puppe, Clemens & Slinko, Arkadii, 2022. "Maximal Condorcet domains: A further progress report," Working Paper Series in Economics 159, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    7. Slinko, Arkadii, 2019. "Condorcet domains satisfying Arrow’s single-peakedness," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 166-175.
    8. Puppe, Clemens, 2018. "The single-peaked domain revisited: A simple global characterization," Journal of Economic Theory, Elsevier, vol. 176(C), pages 55-80.
    9. Ping Zhan, 2019. "A simple construction of complete single-peaked domains by recursive tiling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 477-488, December.
    10. Alexander Karpov & Klas Markstrom & S{o}ren Riis & Bei Zhou, 2023. "Bipartite peak-pit domains," Papers 2308.02817, arXiv.org, revised Jan 2024.
    11. Smeulders, B., 2018. "Testing a mixture model of single-peaked preferences," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 101-113.
    12. Liu, Peng & Zeng, Huaxia, 2019. "Random assignments on preference domains with a tier structure," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 176-194.
    13. Chatterji, Shurojit & Zeng, Huaxia, 2023. "A taxonomy of non-dictatorial unidimensional domains," Games and Economic Behavior, Elsevier, vol. 137(C), pages 228-269.
    14. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    15. Vannucci, Stefano, 2020. "Single peaked domains with tree-shaped spectra," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 74-80.
    16. Slinko, Arkadii & Wu, Qinggong & Wu, Xingye, 2021. "A characterization of preference domains that are single-crossing and maximal Condorcet," Economics Letters, Elsevier, vol. 204(C).
    17. Madhuparna Karmokar & Souvik Roy & Ton Storcken, 2021. "Necessary and sufficient conditions for pairwise majority decisions on path-connected domains," Theory and Decision, Springer, vol. 91(3), pages 313-336, October.
    18. Zhang, Jun, 2020. "When are efficient and fair assignment mechanisms group strategy-proof?," Games and Economic Behavior, Elsevier, vol. 119(C), pages 251-266.
    19. Bredereck, Robert & Chen, Jiehua & Woeginger, Gerhard J., 2016. "Are there any nicely structured preference profiles nearby?," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 61-73.
    20. Bernard Monjardet, 2008. ""Mathématique Sociale" and Mathematics. A case study: Condorcet's effect and medians," Post-Print halshs-00309825, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:63:y:2024:i:1:d:10.1007_s00355-024-01520-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.