IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v113y2021icp191-202.html
   My bibliography  Save this article

Towards a classification of maximal peak-pit Condorcet domains

Author

Listed:
  • Li, Guanhao
  • Puppe, Clemens
  • Slinko, Arkadii

Abstract

In this paper, we classify all maximal peak-pit Condorcet domains of maximal width for n≤5 alternatives. To achieve this, we bring together ideas from several branches of combinatorics. The main tool used in the classification is the ideal of a domain. In contrast to the size of maximal peak-pit Condorcet domains of maximal width themselves, the size of their associated ideal is constant.

Suggested Citation

  • Li, Guanhao & Puppe, Clemens & Slinko, Arkadii, 2021. "Towards a classification of maximal peak-pit Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 191-202.
  • Handle: RePEc:eee:matsoc:v:113:y:2021:i:c:p:191-202
    DOI: 10.1016/j.mathsocsci.2021.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489621000731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2021.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven J. Brams & William V. Gehrlein & Fred S. Roberts (ed.), 2009. "The Mathematics of Preference, Choice and Order," Studies in Choice and Welfare, Springer, number 978-3-540-79128-7, July.
    2. Puppe, Clemens, 2018. "The single-peaked domain revisited: A simple global characterization," Journal of Economic Theory, Elsevier, vol. 176(C), pages 55-80.
    3. Bernard Monjardet, 2009. "Acyclic Domains of Linear Orders: A Survey," Studies in Choice and Welfare, in: Steven J. Brams & William V. Gehrlein & Fred S. Roberts (ed.), The Mathematics of Preference, Choice and Order, pages 139-160, Springer.
    4. Peter Fishburn, 1996. "Acyclic sets of linear orders," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(1), pages 113-124.
    5. Clemens Puppe & Arkadii Slinko, 2019. "Condorcet domains, median graphs and the single-crossing property," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(1), pages 285-318, February.
    6. Ádám Galambos & Victor Reiner, 2008. "Acyclic sets of linear orders via the Bruhat orders," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(2), pages 245-264, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puppe, Clemens & Slinko, Arkadii, 2024. "Maximal Condorcet domains. A further progress report," Games and Economic Behavior, Elsevier, vol. 145(C), pages 426-450.
    2. Li, Guanhao, 2023. "A classification of peak-pit maximal Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 125(C), pages 42-57.
    3. Puppe, Clemens & Slinko, Arkadii, 2022. "Maximal Condorcet domains: A further progress report," Working Paper Series in Economics 159, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guanhao & Puppe, Clemens & Slinko, Arkadii, 2020. "Towards a classification of maximal peak-pit Condorcet domains," Working Paper Series in Economics 144, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    2. Alexander Karpov & Arkadii Slinko, 2023. "Constructing large peak-pit Condorcet domains," Theory and Decision, Springer, vol. 94(1), pages 97-120, January.
    3. Li, Guanhao, 2023. "A classification of peak-pit maximal Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 125(C), pages 42-57.
    4. Slinko, Arkadii, 2019. "Condorcet domains satisfying Arrow’s single-peakedness," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 166-175.
    5. Puppe, Clemens, 2018. "The single-peaked domain revisited: A simple global characterization," Journal of Economic Theory, Elsevier, vol. 176(C), pages 55-80.
    6. Ping Zhan, 2019. "A simple construction of complete single-peaked domains by recursive tiling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 477-488, December.
    7. Puppe, Clemens & Slinko, Arkadii, 2024. "Maximal Condorcet domains. A further progress report," Games and Economic Behavior, Elsevier, vol. 145(C), pages 426-450.
    8. Clemens Puppe & Arkadii Slinko, 2019. "Condorcet domains, median graphs and the single-crossing property," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(1), pages 285-318, February.
    9. Olivier Hudry & Bernard Monjardet, 2010. "Consensus theories: An oriented survey," Documents de travail du Centre d'Economie de la Sorbonne 10057, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Shurojit Chatterji & Souvik Roy & Soumyarup Sadhukhan & Arunava Sen & Huaxia Zeng, 2021. "Probabilistic Fixed Ballot Rules and Hybrid Domains," Papers 2105.10677, arXiv.org, revised Jan 2022.
    11. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    12. Alexander Karpov, 2019. "On the Number of Group-Separable Preference Profiles," Group Decision and Negotiation, Springer, vol. 28(3), pages 501-517, June.
    13. Liu, Peng & Zeng, Huaxia, 2019. "Random assignments on preference domains with a tier structure," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 176-194.
    14. Chatterji, Shurojit & Zeng, Huaxia, 2023. "A taxonomy of non-dictatorial unidimensional domains," Games and Economic Behavior, Elsevier, vol. 137(C), pages 228-269.
    15. Bredereck, Robert & Chen, Jiehua & Woeginger, Gerhard J., 2016. "Are there any nicely structured preference profiles nearby?," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 61-73.
    16. Bernard Monjardet, 2008. ""Mathématique Sociale" and Mathematics. A case study: Condorcet's effect and medians," Post-Print halshs-00309825, HAL.
    17. Slinko, Arkadii & Wu, Qinggong & Wu, Xingye, 2021. "A characterization of preference domains that are single-crossing and maximal Condorcet," Economics Letters, Elsevier, vol. 204(C).
    18. Puppe, Clemens & Slinko, Arkadii, 2022. "Maximal Condorcet domains: A further progress report," Working Paper Series in Economics 159, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    19. Saari, Donald G., 2014. "Unifying voting theory from Nakamura’s to Greenberg’s theorems," Mathematical Social Sciences, Elsevier, vol. 69(C), pages 1-11.
    20. Shurojit Chatterji & Huaxia Zeng, 2022. "A Taxonomy of Non-dictatorial Unidimensional Domains," Papers 2201.00496, arXiv.org, revised Oct 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:113:y:2021:i:c:p:191-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.