IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v60y2023i4d10.1007_s00355-022-01428-0.html
   My bibliography  Save this article

The blocker postulates for measures of voting power

Author

Listed:
  • Arash Abizadeh

    (McGill University)

  • Adrian Vetta

    (McGill University)

Abstract

A proposed measure of voting power should satisfy two conditions to be plausible: first, it must be conceptually justified, capturing the intuitive meaning of what voting power is; second, it must satisfy reasonable postulates. This paper studies a set of postulates, appropriate for a priori voting power, concerning blockers (or vetoers) in a binary voting game. We specify and motivate five such postulates, namely, two subadditivity blocker postulates, two minimum-power blocker postulates, each in weak and strong versions, and the added-blocker postulate. We then test whether three measures of voting power, namely the classic Penrose–Banzhaf measure, the classic Shapley–Shubik index, and the newly proposed recursive measure, satisfy these postulates. We find that the first measure fails four of the postulates, the second fails two, while the third alone satisfies all five postulates. This work consequently adds to the plausibility of the recursive measure as a reasonable measure of voting power.

Suggested Citation

  • Arash Abizadeh & Adrian Vetta, 2023. "The blocker postulates for measures of voting power," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 60(4), pages 595-623, May.
  • Handle: RePEc:spr:sochwe:v:60:y:2023:i:4:d:10.1007_s00355-022-01428-0
    DOI: 10.1007/s00355-022-01428-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00355-022-01428-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00355-022-01428-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    2. Arash Abizadeh & Adrian Vetta, 2021. "A Recursive Measure of Voting Power that Satisfies Reasonable Postulates," Papers 2105.03006, arXiv.org, revised May 2022.
    3. Haller, Hans, 1994. "Collusion Properties of Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 261-281.
    4. Annick Laruelle & Federico Valenciano, 2005. "A critical reappraisal of some voting power paradoxes," Public Choice, Springer, vol. 125(1), pages 17-41, July.
    5. Dan Felsenthal & Moshé Machover & William Zwicker, 1998. "The Bicameral Postulates and Indices of a Priori Voting Power," Theory and Decision, Springer, vol. 44(1), pages 83-116, January.
    6. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    7. André Casajus, 2014. "Collusion, quarrel, and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 1-11, February.
    8. André Casajus, 2012. "Amalgamating players, symmetry, and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 497-515, August.
    9. Marcin Malawski, 2002. "Equal treatment, symmetry and Banzhaf value axiomatizations," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(1), pages 47-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Álvarez-Mozos & O. Tejada, 2015. "The Banzhaf value in the presence of externalities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 781-805, April.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2014. "Decomposition of the space of TU-games, Strong Transfer Invariance and the Banzhaf value," Working Papers 2014-05, CRESE.
    3. McQuillin, Ben & Sugden, Robert, 2018. "Balanced externalities and the Shapley value," Games and Economic Behavior, Elsevier, vol. 108(C), pages 81-92.
    4. Ori Haimanko, 2019. "Composition independence in compound games: a characterization of the Banzhaf power index and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 755-768, September.
    5. Haimanko, Ori, 2018. "The axiom of equivalence to individual power and the Banzhaf index," Games and Economic Behavior, Elsevier, vol. 108(C), pages 391-400.
    6. André Casajus, 2014. "Collusion, quarrel, and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 1-11, February.
    7. André Casajus & Frank Huettner, 2019. "The Coleman–Shapley index: being decisive within the coalition of the interested," Public Choice, Springer, vol. 181(3), pages 275-289, December.
    8. van den Brink, René, 2012. "Efficiency and collusion neutrality in cooperative games and networks," Games and Economic Behavior, Elsevier, vol. 76(1), pages 344-348.
    9. René Brink & Agnieszka Rusinowska & Frank Steffen, 2013. "Measuring power and satisfaction in societies with opinion leaders: an axiomatization," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 671-683, September.
    10. Arash Abizadeh & Adrian Vetta, 2022. "The Blocker Postulates for Measures of Voting Power," Papers 2205.08368, arXiv.org.
    11. René van den Brink & Agnieszka Rusinowska & Frank Steffen, 2009. "Measuring Power and Satisfaction in Societies with Opinion Leaders: Dictator and Opinion Leader Properties," Tinbergen Institute Discussion Papers 09-052/1, Tinbergen Institute.
    12. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    13. G. Arévalo-Iglesias & M. Álvarez-Mozos, 2020. "Power distribution in the Basque Parliament using games with externalities," Theory and Decision, Springer, vol. 89(2), pages 157-178, September.
    14. Ori Haimanko, 2020. "Generalized Coleman-Shapley indices and total-power monotonicity," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 299-320, March.
    15. Annick Laruelle & Federico Valenciano, 2001. "Shapley-Shubik and Banzhaf Indices Revisited," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 89-104, February.
    16. Carreras, Francesc & Freixas, Josep & Puente, Maria Albina, 2003. "Semivalues as power indices," European Journal of Operational Research, Elsevier, vol. 149(3), pages 676-687, September.
    17. Gerard van der Laan & René van den Brink, 1998. "Axiomatization of a class of share functions for n-person games," Theory and Decision, Springer, vol. 44(2), pages 117-148, April.
    18. Besner, Manfred, 2021. "Disjointly productive players and the Shapley value," MPRA Paper 108241, University Library of Munich, Germany.
    19. Rene van den Brink & Chris Dietz, 2012. "Multi-Player Agents in Cooperative TU-Games," Tinbergen Institute Discussion Papers 12-001/1, Tinbergen Institute.
    20. Barua, Rana & Chakravarty, Satya R. & Sarkar, Palash, 2009. "Minimal-axiom characterizations of the Coleman and Banzhaf indices of voting power," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 367-375, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:60:y:2023:i:4:d:10.1007_s00355-022-01428-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.